Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.933-935
/
2014
휴대전화 사용의 대중화로 인하여 개개인의 휴대전화로 수신되는 스팸메시지의 양도 덩달아 증가하게 되었다. 이것은 휴대전화 사용자가 불법광고 노출의 원인이 되고 있다. 이에 많은 스팸메시지 차단기법이 제시되었지만 이는 텍스트기반의 문자메시지에 특화되어있어 문자가 포함되어있는 이미지스팸에는 차단이 어렵다는 문제점이 존재 한다. 이에 본 논문에서는 휴대전화로 오는 이미지메시지 중 스팸이미지를 검출해 내는 모바일 스팸이미지 필터링 시스템을 제시하고자 한다. 제시하고자 하는 시스템은 스팸이미지를 분석하여 이미지의 패턴을 검사하여 특정 패턴이 포함된 이미지에 대해서 스팸이미지로 분류하여 필터링하게 됨으로써, 실제 휴대전화로 수신되는 스팸이미지를 이용한 실험을 진행하였다. 그 결과 기존 텍스트기반 스팸필터링시스템에서 할 수 없었던 스팸이미지 필터링을 할 수 있음을 확인 하였다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2006.05a
/
pp.389-396
/
2006
본 연구에서는 한국어와 영어 메일을 대상으로 2단계 스팸 메일 필터링 시스템을 구축하여 성능평가를 수행한다. 2단계 스팸 메일 필터링 시스템은 블랙리스트를 활용하는 1단계와 기계학습을 통한 지능적인 분류를 하는 2단계로 구성된다. 만약 새로 도착한 메일이 블랙리스트의 내용을 포함한다면 이 메일은 스팸 메일로 분류되고 그렇지 않은 메일은 2단계로 넘어가서 스팸 메일 여부를 판단하게 된다. 메일의 본문이 영어로 작성된 영어 스팸 메일을 일반 메일로부터 분류해내기 위해서는 우선 Stemming과 Stopping 기법을 이용하여 본문에서 정형화된 어휘정보들을 추출한다. 추출된 어휘정보들을 대상으로 속성벡터를 구축한 후 SVM 기계 학습을 시켜 SVM 분류기를 생성하여 지능적인 스팸 메일 필터링을 수행한다. 속성벡터를 구축할 때 기준이 되는 자질을 어떻게 선택하느냐에 따라 스팸 메일 필터링 시스템의 성능이 좌우된다. 따라서 SYM 기계 학습을 위한 속성벡터를 구축할 때 기준이 되는 자질을 선택하는 여러 알고리즘들을 적용하여 성능을 비교 분석한다. 그리고 한국어 스팸 메일 필터링 시스템과 비교하여 영어 스팸 메일 필터링 시스템의 전체적인 성능을 비교 분석한다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.255-259
/
2017
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.
As the volume of spam has increased to extreme levels, many anti-spam filtering techniques have been proposed. Among these techniques, the machine-Loaming filtering technique is one of the most popular filtering techniques. In this paper, we propose a machine-learning spam filtering technique based on the neural network, the genetic algorithm and the $X^2$-statistic. This proposed filtering technique is designed to overcome the problems in existing filtering techniques, and to achieve high spam filtering accuracy. It is able to classify spam and legitimate emil with 95.25 percent and 95.31 percent accuracy. This accuracy of the sum filtering is 7.75 percent and the 12.44 percent higher than rule-based filtering and the Bayesian filtering technique, respectively.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.95-99
/
2014
본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.122-127
/
2007
최근 대표적인 1인 미디어의 형태인 블로그는 개인 기록의 수단뿐만 아니라 기업의 홍보에까지 널리 사용되는 인터넷 미디어이다. 그러나 누구나 글을 쓸 수 있다는 자유로움 이면에 이를 이용한 덧글 스팸이 성행이 성행하고 있다. 일반적인 스팸 필터의 경우 그 해당 덧글만을 가지고 스팸 필터링을 한다. 그러나 특성상 스팸인 덧글이 정상인 덧글보다 상대적으로 짧기 때문에 일반적인 덧글 자체만의 필터링 방법으로는 높은 정확도를 기대하기 힘든 단점이 있다. 본 논문에서는 정상인 덧글과 본문간의 내용상의 유사도가 있음을 가정해 이런 정보를 역카이제곱 분류기에 동시출현(co-occurrence) 정보로 부여함으로써 스팸 필터의 정확도를 높이고자 했으며, 실제 그러한 정보를 추가함으로 단순한 확률기반 스팸 필터링 방법을 사용하는 것보다 스팸 필터의 전반적인 성능이 상승되었음을 실험 결과를 통해 알 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.583-586
/
2023
대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.523-525
/
2005
본 논문에서는 가중치가 부여된 나이브 베이지안 분류자와 스팸 메일의 특성을 이용한 주소 유효성 검사를 결합하여 필터링하는 방식의 스팸 메일 필터링 시스템을 제안하였다. 주소 유효성 검사를 통해 스팸 메일을 효율적으로 필터링 할 수 있으며, 나이브 베이지안 분류자에 가중치를 부여함으로써 더욱 효과적인 분류를 할 수 있다. 또한, 각 요인의 중요도에 따라 다른 비중을 부여함으로써 메일의 특성을 고려한 필터링 환경을 구현하였다. 실험에서는 제안하는 요인들이 실제로 필터링 성능 향상에 어떤 영향을 미치는지 살펴보고 최적의 시스템 성능을 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.