• Title/Summary/Keyword: 스트립 이론

Search Result 125, Processing Time 0.021 seconds

A Study on the 4-bit Microwave Phase Shiftter with PIN Diode (PIN 다이오드를 이용한 초고주파 4-비트 위상기에 관한 연구)

  • Cho, Young-Song;Kweon, Heag-Joong;Lee, Young-Chul;Shin, Chull-Chai
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.47-54
    • /
    • 1990
  • In this paper, we design the 4-bit phase shifter which have $22.5^{\circ},45^{\circ},90^{\circ}$ and $180^{\circ}$ phase shift by applying the loaded line and switched network phase shifter. Its phase shift is variable with changing of the stub and passive device parameters. The experiments show the 6.5 dB average insertion loss and $10^{\circ}$ average phase error at center frequency, 6GHz. The results of experiment agree well with the theories except $180^{\circ}$ phase shifter.

  • PDF

A Strength Analysis of the Hull Gilder among the Rough Sea according to Ship Types (대파고 파랑중에서의 선체장도 해석에 관한 연주 - 선종에 따른 강도, 응답특성비교 -)

  • Sa-Soo Kim;Ku-Kyun Shin;Sung-Wan Son;Jae-Hong Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.153-168
    • /
    • 1993
  • The ship sailing among waves suffers from the various wave loads that comes from its motion throughout its life. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, relatively high wave compared to the height ship's depth is induced the large ship motion, so configuration of the ship section below waterline changes rapidly at each time. This re-sults in a non-linear problem. Considering above situation we have already introduced the non-linear dynamic strength analysis method for the hull girder(refer vol. 29. No.4 November, 1992, Journal of SNAK). In this paper, estimation of the hull girder strength for various ship types such as tankers, containers and log carriers is carried out based on the introduced non-linear method. We expect that the results will be used as useful basic data for the es-timation of dynamic strength of ships in the rough sea.

  • PDF

A Design of the Double Circular Array Patch Antenna Minimized the Side Lobe (부엽준위를 극소화한 이중 원형 배열 패치 안테나의 설계)

  • 진경수;이원석;한정세;박병우;정치현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1676-1682
    • /
    • 1999
  • In this paper, the double circular array microstrip patch antenna was designed to minimize the side lobe in which a cooperate feeding network was used to supply the same amplitude and equi-phase to each antenna element. Eight microstirip patch antenna(MPA) elements were arrayed with $45^{\circ}$ interval in the inner circle and the outer circle respectively. The simulation results showed that when the radii of the inner circle and the outer circle were 0.7 $\lambda$0 and 1.45 $\lambda$0, the side lobes of beam pattern were minimized. As the results of the measurements, the return loss of the designed antenna was -14.5[dB] at 11.75[GHz] in the input terminal. When the level of the main lobe was normalized at 0[dB], those of the first and the second side lobe were -18[dB] and -26[dB] respectively. The radiation patterns agree well with the simulated patterns.

  • PDF

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.