• Title/Summary/Keyword: 스트론튬-90

Search Result 34, Processing Time 0.023 seconds

Sorption Characteristics of Strontium and Nickel on Mackinawite According to pH Variations in Alkaline Conditions (염기 환경에서 pH 변화에 따른 맥키나와이트 광물에 스트론튬과 니켈의 수착 특성)

  • Park, Chung-Kyun;Park, Tae-Jin;Lee, Seung-Yup;Lee, Jae-Kwang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • Strontium (90Sr) and nickel (59Ni) have been considered as key radionuclides in the safety assessment of radioactive waste disposal. Through various efforts to impede the migration of radioactive nuclides underground, it has been established that some minerals generated from the corrosion of the waste containers have a positive chemical interaction with these radionuclides. Among these minerals we selected mackinawite (FeS), an iron and sulfur compound, and performed a sorption experiment for the Sr and Ni in FeS under anoxic and alkaline conditions by reflecting deep underground environments. The effects of pH on sorption were likewise investigated in the pH range of 8 ~ 12. As a result, it was found that strontium failed to exhibit a good sorption capacity in a weak alkaline range, while nickel showed a noticeably higher sorption affinity over the entire experimental pH range. Moreover, we determined that as the pH increased in the solution, the distribution coefficients (Kd) were increased for both nuclides, which reflects when an alkalinity increses, the surface of the mineral charges much negatively by detaching the hydrogen or cations on the mineral surface. Thus, it can be concluded that the cationic nuclides of Sr and Ni can attach easily to the mineral under strong alkalinity.

Influence of Ionic Strength, pH, and Complex-forming Anions on the Adsorption of Cesium-137 and Strontium-90 by Kaolinite (카올리나이트에 의한 세슘-137 및 스트론튬-90 흡착에 대한 이온강도, pH, 복합체-형성 음이온의 영향)

  • Jeong, Chan Ho;Cho, Young Hwan;Hahn, Pil Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of the major cations ($Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$), complex-forming anions ($SO_4{^{2-}}$, $HCO_3{^-}$), and solution pH on the adsorption of $^{137}Cs$ and $^{90}Sr$ by kaolinite in groundwater chemistry were investigated. Three-dimensional Kd modelling designed by a statistical method was attempted to compare the relative effect among hydrated radii, charge and concentration of competing cations on the adsorption of Cs and Sr. The modelling results indicate that the hydrated radii of competing cations is the most important factor, and then their charges and concentrations are also important factors in order. The property of zeta potential of kaolinite particles was discussed in terms of the amphoteric reactions of a kaolinite surface affecting the adsorption of Cs and Sr. The ionic strength of competing cations on the adsorption of Cs and Sr exerts a greater effect than the solution pH. The sorption behaviour of Sr on kaolinite is also highly dependent on the concentration of bicarbonate. The speciation of Sr and the saturation state of a secondary phase were thermodynamically calculated by a computer program, WATEQ4F. This indicates that the change in solution pH with the concentration of bicarbonate and the precipitation of a strontianite ($SrCO_3$) are major factors controlling Sr adsorption behaviour in the presence of bicarbonate ion.

  • PDF

Removal of Cesium and Separation of Strontium for the Analysis of the Leachate of Spent Fuel (사용후핵연료 침출액 분석을 위한 세슘의 제거 및 스트론튬의 분리)

  • Kim, Seung Soo;Chun, Kwan Sik;Kang, Chul Hyung
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The selective removal of cesium by ammonium molybdophosphate (AMP) was studied in order to reduce an interference by high radioactivity of cesium on the determination of low radioactive elements in leachate of spent fuel. The removal of Cs, U, Ce, La, Co Ca, Na Sr and K was investigated for the leachate and the bentonite in contact with a spent fuel. More than 90% of cesium was removed by AMP and Ca, Na, Co and Sr was remained in 0.1 M $HNO_3$. However, three valence elements such as La and Ce were also removed by AMP. Though a little of potassium of the bentonite components was adsorbed on AMP, the potassium in the bentonite solution diluted to its concentration in a real sample would not affect the capacity of AMP greatly. From another experiment for the separation of strontium as a leaching indicator of spent fuel, the recovery of strontium in 8.0 M $HNO_3$ solution by using Sr-resin (Eichrom, P/N SR-B50-A) was more than 95% by eluting with 0.05 M $HNO_3$.

The Uptake and Loss of Strontium-90 by the Seaweed Undaria pinnatifida (미역에 의한 스트론튬-90의 농축 및 잔류)

  • Byung-Sun Yoo;Koon-Ja Lee;Su-Rae Lee
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.116-121
    • /
    • 1982
  • The uptake and retention of strontium-90 from seawater by the seaweed Undaria pinnatifda(sea mustard) varied depending on the plant part, exposure time, salinity, contents of stable strontium and calcium, and presence of chelating agent in the seawater. The concentration factors attained at equilibrium were in the range of 50 and it was evident that the bioaccumulation was largely due to the adsorption of the radionuclide on the surface of seaweed.

  • PDF

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

A Study on the Decontamination of Cs-137 and Sr-90 Contained in the Liquid Radioactive Waste Discharged from the Spent Fuel Storage Tank Using Microalgae (미세조류를 이용한 사용후핵연료 저장조에서 배출되는 방사성 폐액에 함유된 Cs-137 및 Sr-90 제염에 관한 연구)

  • Kim, Tae Young;Park, Hye Min;Song, Yang Soo;Lee, Un Jang
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.20-25
    • /
    • 2022
  • In this study, the applicability of microalgae was evaluated for eco-friendly decontamination of cesium-137 (Cs-137) and strontium-90 (Sr-90), which are radioactive nuclides contained in radioactive waste. The monolithic radioactive solution used in the experiment was manufactured at a concentration of 1.5 Bq/mL Cs-137 and 1.0 Bq/mL Sr-90 by diluting a standard radioactive solution and distilled water. This experiment used two types of microalgae, Chlorella Vulgaris was used for Sr-90 decontamination and Hematococcus pluvialis for Cs-137 decontamination. The experimental method is to put the microalgae cultured for 2 weeks into a bottle with a semi-permeable membrane, and then put the bottle in which the microalgae was put into the manufactured radioactive solution, so that the microalgae and the radioactive solution react through the semi-permeable membrane for 48 hours. For the radioactivity concentration analysis of each sample, a gamma-ray nuclide analyzer was used for Cs-137, a γ-ray isotope, and a Liquid Scintillation Count(LSC) was used f or Sr-90, a β-ray isotope. As a result of the experiment, it was confirmed that about 88.0 % of Cs-137 and about 89.7 % of Sr-90 could be decontaminated, and about 98.6 % of Sr-90 was finally able to be decontaminated by the two-stage decontamination method.

Fallout Radioactivity in Korean Foodstutts (Part 4) Stronitium-90 in Liquid Whole Milk Produced in Korea (한국식품 중의 방사능 함량 (제4보) 한국 우유의 스트론튬-90 함량)

  • Yang Kyung Rin
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.181-186
    • /
    • 1969
  • The concentration of Strontium-90 in liquid whole milk produced in Korea were measured during past four years. The samples of milk were purchased from dairies in Seoul. Strontium-90 was analysed radiochemically and the amount of stable calcium was also determined. Radioactivity of Yttrium-90 was counted in low background beta counter which has the background of 1.38 cpm. The concentrations of Strontium-90 in the milk are 25.1 PCi $^{90}Sr$/g.Ca in 1965, 26.8 PCi $^{90}Sr$/g. Ca in 1966, 13.7 PCi 90Sr/g.Ca in 1967 and 18.2 PCi $^{90}Sr$/g.Ca in 1968 in annual average. The concentrations of Strontium-90 in the milk of 1967 and of 1968 were decreased approximately compared with the values of 60% 1965 and 1966. From the results we can see that Strontium-90 concentrations in the milk vary roughly proportionally with the specific activity of fallout. Considering on the safety problems, the Strontium-90 levels in the milk produced in Korea were far below the maximum permissible level recommended by ICRP.

  • PDF

The Uptake and Translocation of Strontium-90 in Soybean Plants (대두식물에 의한 스트론튬-90의 흡수 및 이행)

  • Koon-Ja Lee;Jeong-Ho Lee;Su-Rae Lee
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.110-116
    • /
    • 1983
  • The absorption and translocation of strontium-90 by soybean plant, Glycine max, was studied by applying strontium-90 solution on the foliage or on the soil surface right after the first flowering time under greenhouse conditions. The results are summarized as follows. In the foliar application of strontium-90, only a small portion of the radioactivity was translocated to other parts of the plant and most of it remained in the applied leaves, which should cause soil contamination after falling. In the soil surface application of strontium-90, much of the radioactivity was absorbed through the root and translocated to stems and leaves by different patterns depending on the growth stage.

  • PDF

Optimization of Radiostrontium Separation Process Using Sr Resin (Sr resin을 이용한 방사성 스트론튬 분리의 최적화)

  • Jung, Yoonhee;Kim, Hyuncheol;Suh, Kyung Suk;Kang, Mun Ja;Chung, Kun Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • For the analysis of 90Sr, which is a pure beta emitter, radiochemical separation from the main interfering elements such as Ca, Ba and Ra is required due to their similarity in chemical behavior to strontium. This study describes a radioanalytical procedure using extraction chromatography for separating Sr from interfering elements. The maximum capacity of the resin for Sr was approximately 6 mg per 1.5 mL of bed volume (BV). The recovery of Sr on the resin 1.5 mL (BV) was quantitative for the calcium level of 200 mg at the flow rate of 1 mL min-1. However the chemical yield declined by increasing the flow rate by up to 5 mL min-1 even at the calcium level of 200 mg. When using the same BV of Sr resin, the performance of the resin was enhanced as the cross-sectional area of the Sr resin column is small.