• Title/Summary/Keyword: 스트렙토조토신 유발 당뇨병

Search Result 10, Processing Time 0.022 seconds

The Role of Increased Oxidative Stress in the Development of Diabetic Nephropathy (당뇨병성 신증의 발생에 있어서 산화성 스트레스의 역할)

  • Jang Yeon-Jin;Park Hyoung-Sup;Kim Hyoun-Sik;Hong Hea-Nam;Kim Mi-Kyung
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.95-102
    • /
    • 1995
  • The pathogenesis of diabetic nephropathy is still not completely understood while renal disease is one of the most common disabling complications of diabetes. We, in the present study, investigated the possible involvement of oxidative stress in the development of diabetic nephropathy. To hasten the development of diabetic nephropathy, streptozotocin was injected to unilaterally nephrectomized rats (NEPH-STZ). Eight weeks later, NEPH-STZ rats developed severe hyperglycemia, proteinuria, and hypertension. The kidneys of these rats showed compensatory hypertrophy and mesangial expansion. In contrast, the rats with streptozotocin injection alone (STZ) did not increase urinary protein excretion. Nephrectomized non-diabetic rats (NEPH) developed increased urine protein excretion, but without prominent renal morphological changes. However, oxidation of renal cortical tissue protein significantly increased in all 3 groups of NEPH, STZ and NEPH-STZ in comparison to control rats (CONT). The result indicates the non-specificity of the oxidative tissue damage and suggests that the oxidative damage is hardly a sole mechanism leading to the development of the diabetic nephropathy. However, it would still be a contributing factor considering that the oxidative stress is a common final pathway mediating tissue damages in chronic diabetic complications and other serious illness.

  • PDF

Alveolar bone turnover during experimental tooth movement in Streptozotocin-induced diabetic rat (스트렙토조토신 유발 당뇨병 백서에서 실험적 치아이동중의 치조골 교체)

  • Lee, Ki-Soo;Lee, Taek-Woo;Kim, Sung-Jin
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.357-367
    • /
    • 2001
  • The purpose of this study was to investigate the alveolar bone turnover in diabetic rat, and to compare the alveolar bone turnover during tooth movement in diabetes with that in normal control Eighty Male Sprague-Dawley strain rats(8th week) were divided into normal control(N), normal-tooth movement (N-tm), diabetes(D), and diabetes-tooth movement(D-tm) groups. Eighteen days before the start of the experiment, diabetes was induced with a single injection of streptozotocin 50 mg/kg of body weight in citrate buffer as vehicle via the tail vein. Maxillary first molars of rats were moved mesially by 40 grams of the closed coil spring. Experimental animals were sacrificed after 1d, 3d, 7d, and 14d experimental period, and the alveolar bone around the maxillary first molars were assayed biochemically for acid phsophatase(ACP) and tartrate-resistant acid phosphatase (TRAP) as bone resorption markers, and alkaline phosphatase(ALP) and osteocalcin(OC) as bone formation markers. TRAP and OC concentration in serum and alveolar bone of D group were lower than those in N group, and especially OC concentration decreased mote following diabetes prolonged, which showed the decreased skeletal and alveolar bone resorption and formation potential in diabetic rats. In N-tm group compared with N group, alveolar bone ACP and TRAP concentrations were highest at 1d and 3d(p<0.01), decreased after then, and showed lowest at 14d, and alveolar bone OC concentration was higher at 3d, 7d, and 14d(p<0.001) and showed a tendency of peak level at 7d. which showed the peak of concentration of bone resorption markets at 1d-3d and those of bone formation markers at 7d. In D-tm group compared with N group, alveolar bone ACP and TRAP concentrations were higher at 3d, 7d and 14d(p<0.001), and tended to reach peak value at 7d and persisted through 14d, and alveolar bone ALP and OC concentration increased but not different from that of N group. The amount of tooth movement in D group were greater than that of N group at all experimental period. Those results were suggested that during diabetes, the alveolar and skeletal bone undergo low bone turnover and the mote amount of tooth movement, hut because the peak time of alveolar bone resorption activity was delayed and sustained in longer period of tooth movement and alveolar bone formation activity is lower than that of normal tooth movement, the periodontal space is supposed to be larger doting tooth movement.

  • PDF

Alleviating Effects of Mulberry Fruit Extract on Postprandial Hyperglycemia in Streptozotocin-induced Diabetic Mice (STZ으로 유도된 당뇨 마우스에서 오디열매추출물의 식후 고혈당 완화 효과)

  • Choi, Kyung Ha;Kang, Ji-Hye;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.921-927
    • /
    • 2016
  • Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. The alpha-glucosidase inhibitors regulate postprandial hyperglycemia by impeding the rate of carbohydrate (such as starch) digestion in the small intestine. This study was designed to investigate the inhibitory actions of mulberry fruit extract (MFE) on α-glucosidase and α-amylase activities, and its alleviating effect on postprandial hyperglycemia activities in vitro and in vivo. Male four-week old ICR mice and streptozotocin (STZ)-induced diabetic mice were treated with mulberry fruit extract. MFE showed strong inhibitory effects against α-glucosidase and α-amylase activities, with half-maximal inhibitory concentration (IC50) values of 0.16 and 0.14 mg/ml, respectively, and was more effective than acarbose, which was used as a positive control. The increase in postprandial blood glucose levels was more significantly attenuated in the MFE-administered group mice than in the control group mice of both STZ-induced diabetic and normal mice. Moreover, the area under the glucose response curve significantly decreased following MFE administration in diabetic mice. These results indicate that MFE may be a potent inhibitor of α-glucosidase and α-amylase, and helpful in suppressing postprandial hyperglycemia in diabetic mice. The mulberry fruit extracts may be considered as a potential candidate for the management of diabetes.

Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice (스트렙토조토신으로 유도한 당뇨마우스에서 Sodium Butyrate의 혈당, 혈청 지질 성상 및 염증 억제에 미치는 영향)

  • Yun, Jung-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2015
  • Sodium butyrate is a short-chain fatty acid derivative found in foods, such as Parmesan cheese and butter and is produced by anaerobic bacteria fermentation of dietary fibers in the large intestine. There have been reports that butyrate prevented obesity, protected insulin sensitivity, and ameliorated dyslipidemia in dietary obese mice. This study investigated the effects of sodium butyrate on fasting blood glucose level and serum lipid profile in streptozotocin(STZ)-induced diabetic mice. Male C57BL/6 mice were fed AIN-93G for four weeks prior to intraperitoneal injections with STZ (100 mg/kg body weight). Diabetic mice had supplements of 5% sodium butyrate for four weeks. The 5% sodium butyrate diet significantly improved fasting blood glucose level and lipid profile in STZ-induced diabetic mice. Inflammation has been recognized to decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can directly affect beta cell function, leading to secretory dysfunction and increased apoptosis. Thus, anti-inflammatory therapies represented a potential approach for the therapy of diabetes and its complications. In this animal study, the 5% sodium butyrate supplementation also inhibited inflammatory cytokine production in STZ-induced diabetic mice. These results suggested that sodium butyrate can be a potential candidate for the prevention of diabetes and its complications.

Cyanidin-3-O-glucoside Ameliorates Postprandial Hyperglycemia in Diabetic Mice (당뇨 마우스에서 cyanidin-3-O-glucoside의 식후 고혈당 완화 효과)

  • Choi, Kyungha;Choi, Sung-In;Park, Mi Hwa;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.32-37
    • /
    • 2017
  • Cyanidin-3-O-glucoside (C3G) shows anti-inflammatory and antioxidant effects; however, its effect on postprandial blood glucose levels remains unknown. Alpha-glucosidase inhibitors regulate post-prandial hyperglycemia by impeding carbohydrate digestion in the small intestine. Here, the effect of C3G on ${\alpha}-glucosidase$ and ${\alpha}-amylase$ inhibition and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice were evaluated. ICR normal and STZ-induced diabetic mice were orally administered soluble starch alone or with C3G or acarbose. The half-maximal inhibitory concentrations of C3G for ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were 13.72 and $7.5{\mu}M$, respectively, suggesting that C3G was more effective than acarbose. The increase in postprandial blood glucose levels was more significantly reduced in the C3G groups than in the control group for both diabetic and normal mice. The area under the curve for the diabetic mice was significantly reduced following C3G administration. C3G may be a potent ${\alpha}-glucosidase$ inhibitor and may delay dietary carbohydrate absorption.

Antidiabetic Effect of Ethanol Extract on Astragali Radix (황기 에탄올 추출물의 항 당뇨 효과)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.898-904
    • /
    • 2019
  • This study was carried to investigate the antidiabetic effect of ethanol extract of Astragali Radix(A.R) in Streptozotocin(STZ) induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose of 45mg/kg dissolved in citrate buffer. The ethanol extract of A. R was orally administrated once a day for 7 days at a dose of 1,000mg/kg. The contents of serum glucose, triglyceride(TG), total cholesterol were significantly decreased in A.R treated group compared to the those of STZ-control group. The content of hepatic glycogen and activities of glucokinase(GK) and glucose-6-phosphate dehydrogenase(G-6-PDH) were significantly increased, and activity of glucose-6-phoshatase(G-6-Pase) was significantly decreased in A.R treated group compared to the those of STZ-control group, These results indicated that ethanol extract of A.R would have antidiabetic effect in STZ-induced diabetic rats.

Supplementary Effect of the Giant Embryonic Rice on Serum and Heaptic Lipid Levels of Streptozotocin-induced Diabetic Rats (Streptozotocin 유발 당뇨 쥐의 거대배아미 식이에 의한 혈액 및 간조직의 지질조성)

  • Lee, Youn-Ri;Kim, Chae-Eun;Nam, Seok-Hyun;Kang, Mi-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.562-566
    • /
    • 2006
  • This study was carried out to investigate the supplementary effects of giant embryonic rice, which has over two times of embryo size compared the normal rice, on lipid metabolism of insulin dependent diabetic rats. Streptozotocin induced diabetic rats were fed four kinds of experimental diets com starch diet as a control (C-D), a polished rice diet (R-D), a brown rice diet (BR-D) and a giant embryonic rice diet (GER-D) respectively, for 6 weeks. Diet intake body weight, organ weights and lipid levels of serum, liver and feces were measured. There was significant difference in diet intake and body weight among experimental groups. The concentrations of serum triglyceride and total serum cholesterol of BR-D and GER-D groups were lower than those of others. The total hepatic cholesterol level was the lowest in GER-D group. The contents of total lipid and total cholesterol excreted in feces of BR-D and GER-D groups were higher than those of C-D and R-D groups. These results suggested the giant embryonic rice diets can effectively reduce serum triglyceride level and total hepatic cholesterol level in insulin dependent diabetic rats, and hypolipidemic effects be due to increasing fecal lipid excretion.

Antidiabetic Effect of Ethanol Extract on Phelladindron amurense Rupr (황백 에탄올 추출물의 혈당강하작용)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.682-687
    • /
    • 2020
  • This study was performed to investigate the antidiabetic effect of ethanol extract of Phelladrindron Amurense Rupr (P.A) in Streptozotocin(STZ) induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose of 45mg/kg,b.w. dissolved in citrate buffer. The ethanol extract of P. A was orally administrated once a day for 7 days at a dose of 1,000mg/kg. The content of serum glucose, was significantly decreased in P.A treated group compared to the those of STZ-control group. The content of hepatic glycogen and activities of glucokinase(GK) and glucose-6-phosphate dehydrogenase(G-6-PDH) were significantly increased(p<0.05), and activity of glucose-6-phoshatase(G-6-Pase) was significantly decreased(p<0.05) in P.A treated group compared to those of STZ-control group, These results indicated that ethanol extract of P.A have antidiabetic effect in STZ-induced diabetic rats.

Effect of Fermented Yacon (Smallanthus Sonchifolius) Leaves Tea on Blood Glucose Levels and Glucose Metabolism in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Mice (야콘잎 발효차가 고지방식이와 스트렙토조토신으로 유도한 제2형 당뇨마우스의 혈당 및 당대사에 미치는 영향)

  • Kim, In-Sook;Lee, Jin;Lee, Jeom-Sook;Shin, Dong-Young;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • The aim of this study was to investigate the hypolgycemic activity of water extract of fermented yacon (Smallanthus sonchifolius) leaves tea (Yacon LWE) in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of Yacon LWE (0.16% and 0.8%, wt/wt) for 6 weeks. The supplementation of high-dose Yacon LWE significantly lowered blood glucose levels and plasma ALT and AST activities compared with the control group. High-dose Yacon LWE also improved the insulin tolerance without any changes in plasma and pancreatic insulin concentrations in HFD/STZ-induced diabetic mice. Yacon LWE supplementation increased the insulin staining of pancreatic $\beta$-cells in a dose-dependent manner. Both 0.16% and 0.8% of Yacon LWE significantly elevated plasma leptin concentration, hepatic glucokinase activity and glucokinase/glucose-6-phosphatase ratio compared with the control group. However, glycosylated hemoglobin concentration was not different among the groups. These results suggest that high-dose Yacon LWE lowers the blood glucose level partly by enhancing insulin sensitivity and hepatic glucose metabolism in type 2 diabetic mice.

Memory improvement effect of Artemisia argyi H. fermented with Monascus purpureus on streptozotocin-induced diabetic mice (스트렙토조토신으로 유도된 당뇨 마우스에서 Monascus purpureus을 이용한 발효 쑥의 기억력 개선 효과)

  • Lee, Chang Jun;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Park, Seon Kyeong;Kang, Jeong Eun;Kwon, Bong Seok;Park, Sang Hyun;Park, Su Bin;Ha, Gi-Jeong;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.550-558
    • /
    • 2017
  • The effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM) on cognitive impairments has been studied in a mice model of diabetes-associated cognitive decline induced by streptozotocin (STZ). C57BL/6 mice (9 weeks of age, male) were separated into four groups: a normal control, STZ-induced diabetic mouse group (STZ group), Artemisia argyi H. (AA) 10 group (diabetic mouse+AA 10 mg/kg/day), AAFM 10 group (diabetic mouse+AAFM 10 mg/kg/day). Administration of AA and AAFM significantly improved glucose tolerance, as shown by the intraperitoneal glucose tolerance test (IPGTT), and ameliorated cognitive deficit, as shown by the behavioral tests including passive avoidance, Morris water maze, and Y-maze tests. After behavioral tests, the cholinergic system was examined by assessment of the acetylcholine (ACh) level and acetylcholinesterase (AChE) inhibitory activity, and the antioxidant system was also assessed by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the brain and liver.