DOI QR코드

DOI QR Code

Effect of Fermented Yacon (Smallanthus Sonchifolius) Leaves Tea on Blood Glucose Levels and Glucose Metabolism in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Mice

야콘잎 발효차가 고지방식이와 스트렙토조토신으로 유도한 제2형 당뇨마우스의 혈당 및 당대사에 미치는 영향

  • Kim, In-Sook (Department of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Lee, Jin (Department. of Food and Nutrition, Sunchon National University) ;
  • Lee, Jeom-Sook (Department. of Food and Nutrition, Sunchon National University) ;
  • Shin, Dong-Young (Department of Development in Resource Plants, Sunchon National University) ;
  • Kim, Myung-Joo (Faculty of Hotel Cuisine, Daegu Polytechnic College) ;
  • Lee, Mi-Kyung (Department. of Food and Nutrition, Sunchon National University)
  • 김인숙 (순천대학교 교육대학원 영양교육) ;
  • 이진 (순천대학교 식품영양학과) ;
  • 이점숙 (순천대학교 식품영양학과) ;
  • 신동영 (순천대학교 자원식물개발학과) ;
  • 김명주 (대구산업정보대학 호텔조리계열) ;
  • 이미경 (순천대학교 식품영양학과)
  • Received : 2010.06.10
  • Accepted : 2010.07.07
  • Published : 2010.08.30

Abstract

The aim of this study was to investigate the hypolgycemic activity of water extract of fermented yacon (Smallanthus sonchifolius) leaves tea (Yacon LWE) in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of Yacon LWE (0.16% and 0.8%, wt/wt) for 6 weeks. The supplementation of high-dose Yacon LWE significantly lowered blood glucose levels and plasma ALT and AST activities compared with the control group. High-dose Yacon LWE also improved the insulin tolerance without any changes in plasma and pancreatic insulin concentrations in HFD/STZ-induced diabetic mice. Yacon LWE supplementation increased the insulin staining of pancreatic $\beta$-cells in a dose-dependent manner. Both 0.16% and 0.8% of Yacon LWE significantly elevated plasma leptin concentration, hepatic glucokinase activity and glucokinase/glucose-6-phosphatase ratio compared with the control group. However, glycosylated hemoglobin concentration was not different among the groups. These results suggest that high-dose Yacon LWE lowers the blood glucose level partly by enhancing insulin sensitivity and hepatic glucose metabolism in type 2 diabetic mice.

본 연구는 고지방식이와 STZ으로 제2형 당뇨병을 유발한 마우스에게 야콘잎 발효차 열수추출물을 수준별로 급여한 후 혈당과 당대사 변화를 살펴보았다. 4주령 ICR 마우스를 1주간 적응시킨 후 고지방식이 (전체 열량의 37% 지방)를 4주간 급여하여 인슐린저항성을 유발한 마우스에게 STZ (100 mg/kg body weight)을 일회 복강주사 하였다. 7일 후 공복시 혈당이 250 mg/dL인 마우스만을 사용하여 난괴법으로 대조군, 저농도 야콘잎 발효차 열수추출물군 (0.16%, wt/wt), 고농도 야콘잎 발효차 열수추출물군 (0.8%, wt/wt)으로 나누었으며, 야콘잎 발효차 분말이 1%와 5% 수준이 되도록 열수추출물을 식이에 첨가 조제하여 6주간 사육하였다. 체중, 일일 식이섭취량과 상대적 장기무게는 야콘잎 발효차 열수추출물 급여에 따른 유의적인 영향이 없었다. 실험 6주 동안 대조군에 비하여 야콘잎 발효차 열수추출물 급여는 혈당상승을 억제하였는데 특히, 고농도 야콘잎발효차 열수추출물 급여는 실험 5주째부터 대조군에 비하여 유의적으로 혈당을 낮추기 시작하여 실험종료시 대조군에 비하여 21%의 혈당을 개선하였다. 반면, 당화헤모글로빈의 함량은 야콘잎 발효차 열수추출물 급여에 따른 영향이 관찰되지 않았다. 야콘잎 발효차 열수추출물 급여는 혈장 중의 인슐린과 C-펩티드 함량 및 내당능을 개선하지 못하였으나 고농도의 야콘잎 발효차 열수추출물 급여는 제2형 당뇨마우스의 인슐린 내성을 유의적으로 개선하였다. 또한 혈장 중의 렙틴 농도는 모든 야콘잎 발효차 열수추출물군이 대조군에 비하여 1.2배 유의적으로 높았으며, 대조군에 비하여 야콘잎 발효차 열수추출물 급여군의 췌장내 $\beta$-세포가 농도의존적으로 많이 존재하였다. 간조직의 GK 활성은 대조군에 비하여 저농도와 고농도의 야콘잎 발효차 열수추출물 급여군에서 유의적으로 높았으며, G6Pase 활성은 고농도 야콘잎 발효차 열수추출물 급여군이 대조군과 저농도 급여군에 비하여 낮았다. 그러나 GK/G6Pase 비는 저농도와 고농도 야콘잎 발효차 열수추출물군 모두 대조군에 비하여 유의적으로 높았다. 한편, PEPCK 활성은 실험군간 유의적인 변화가 없었다. 고농도의 야콘잎 발효차 열수추출물군의 혈장 AST와 ALT 활성은 대조군에 비하여 유의적으로 낮았다. 이와 같이 고농도의 야콘잎 발효차 열수추출물은 제2형 당뇨마우스의 인슐린 민감성을 개선하고 간조직에서 당이용을 높이는 반면, 당 신생을 억제함으로써 혈당저하에 효과적인 것으로 나타났다.

Keywords

References

  1. Novel V. The lost crops of the Incas. Ceres 1984; 17: 37-40
  2. Ryu JH, Doo HS, Moon JG. Development of cultivation, propagation and manufactured food and new crop, yacon (Polymnia sonchifolia Poepp. & Endl). Research Report of Ministry of Agriculture & Forestry; 1976, p.26
  3. Goto K. Isolation and structural analysis of oligosaccharides from yacon (Polymnia sonchifolia). Biosci Biotechnol Biochem 1995; 59: 2346-2347 https://doi.org/10.1271/bbb.59.2346
  4. Lee FZ, Lee JC, Yang HC, Jung DS, Eun JB. Chemical composition of dried leaves and stems and crude tubers of yacon (Polymnia sonchifolia). Korean J Food Preservation 2002; 9: 61-66
  5. Lin F, Hasegawa M, Kodama O. Purification and identification of antimicrobial sesquiterpene lactones from yacon (Smallanthus sonchifolius) leaves. Biosci Biotechnol Biochem 2003; 67: 2154- 2159 https://doi.org/10.1271/bbb.67.2154
  6. Aybar MJ, Sanchez Riera AN, Grau A, Sanchez SS. Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats. J Ethnopharmacol 2001; 74: 125-132 https://doi.org/10.1016/S0378-8741(00)00351-2
  7. Valentova K, Cvak L, Muck A, Ulrichova J, Simanek V. Antioxidant activity of extracts from the leaves of Smallanthus sonchifolius. Eur J Nutr 2003; 42: 61-66 https://doi.org/10.1007/s00394-003-0402-x
  8. Volpato G, Vieira F, Almeida F, Camara F, Lemonica I. II Word Congress on Medicinal and Aromatic Plants for Human Welfare organized by ICMAP-ISHS-SAIPA, Mendoza, Argentina Abstract; 1997. p.349
  9. Miura T, Itoh Y, Ishida T. Hypoglycaemic and hypolipidemic activity of the leaf of Smallanthus sonchifolius in genetically type 2 diabetic mice. J Tradit Med 2004; 21: 275-277
  10. Ogose N, Ai T, Terada S, Yoshioka K, Tago K, Tishimura A, Kajimoto Y, Kajimoto O. The inhibitory effectof the food which consists of the extract from the leaf and stem of yacon on the postprandial increase in blood glucose for subjects with normal blood glucose or borderline diabetes. Japanese Pharmacology & Therapeutics 2006; 34: 737-746
  11. Genta SB, Cabrera WM, Mercado MI, Grau A, Catalán CA, Sanchez SS. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chem Biol Interact 2010; 185: 143-152 https://doi.org/10.1016/j.cbi.2010.03.004
  12. American Institute of nutrition. Report of the American Institute of nutrition Ad Hoc committee on standards for nutritional studies. J Nutr 1977; 107: 1340-1348 https://doi.org/10.1093/jn/107.7.1340
  13. Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 1973; 14: 625-631
  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem 1976; 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  15. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extract: physiological implications of higher cellular activity. Arch Biochem Biophys 1987; 253: 156-167 https://doi.org/10.1016/0003-9861(87)90648-5
  16. Newgard CB, Hirsch LJ, Foster DW, McGarry DJ. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. J Biol Chem 1983; 258: 8046-8052
  17. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenasecoupled reaction. Anal Biochem 1988; 173: 185-189 https://doi.org/10.1016/0003-2697(88)90176-5
  18. Bentle LA, Lardy HA. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem 1976; 251: 2916-2921
  19. Chalkley SM, Hettiarachchi M, Chisholm DJ, Kraegen EW. Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats. Am J Physiol Endocrinol Metab 2002; 282: E1231-E1238 https://doi.org/10.1152/ajpendo.00173.2001
  20. Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu L, Li C, Howard AD, Moller DE, Thornberry NA, Zhang BB. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes 2006; 55: 1695-1704 https://doi.org/10.2337/db05-1602
  21. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005; 52: 313-320 https://doi.org/10.1016/j.phrs.2005.05.004
  22. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543-546 https://doi.org/10.1126/science.7624777
  23. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763-770 https://doi.org/10.1038/27376
  24. Muzzin P, Eisensmith RC, Copeland KC, Woo SL. Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci USA 1996; 93: 14804-14808 https://doi.org/10.1073/pnas.93.25.14804
  25. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903-908 https://doi.org/10.1038/43185
  26. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O'Kirwan F, Whitby R, Liang L, Cohen P, Bhasin S, Krauss RM, Veldhuis JD, Wagner AJ, DePaoli AM, McCann SM, Wong ML. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004; 101: 4531-4536 https://doi.org/10.1073/pnas.0308767101
  27. Kusakabe T, Tanioka H, Ebihara K, Hirata M, Miyamoto L, Miyanaga F, Hige H, Aotani D, Fujisawa T, Masuzaki H, Hosoda K, Nakao K. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 2009;52: 675-683 https://doi.org/10.1007/s00125-009-1258-2
  28. Valentová K, Truong NT, Moncion A, de Waziers I, Ulrichová J. Induction of glucokinase mRNA by dietary phenolic compounds in rat liver cells in vitro. J Agric Food Chem 2007; 55: 7726-7731 https://doi.org/10.1021/jf0712447
  29. Jirovsky D, Horakova D, Kotouek M, Valentova K, Ulrichova J. Analysis of phenolic acids in plant materials using HPLC with amperometric detection at a platinum tubular electrode. J Sep Sci 2003; 26: 739-742 https://doi.org/10.1002/jssc.200301386
  30. Lachman J, Fernandez EC, Orsak M. Yacon [Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson] chemical composition and use-a review. Plant Soil Environ 2003; 49: 283-290
  31. Simonovska B, Vovk I, Andrensek S, Valentová K, Ulrichova J. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. J Chromatogr A 2003; 1016: 89-98 https://doi.org/10.1016/S0021-9673(03)01183-X

Cited by

  1. Quality Characteristics and Anti-Diabetic Effect of Yacon Vinegar vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.079
  2. Hypoglycemic Effect of Smallanthus sonchifolius (Yacon) Extracts on Animals with Streptozotocin-induced Diabetes vol.41, pp.6, 2012, https://doi.org/10.3746/jkfn.2012.41.6.759
  3. Flavor Characteristics and Consumer Acceptance of Yacon (Smallanthus sonchifolius Poepp & Endl) Leaf Tea by Different Processes vol.28, pp.6, 2015, https://doi.org/10.7732/kjpr.2015.28.6.734
  4. Anti-Diabetic Effects of Mori Folium Extract on High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus in Mice vol.30, pp.1, 2015, https://doi.org/10.6116/kjh.2015.30.1.1.
  5. Blanching Effect on Quality Characteristics and Antioxidant Activities in Yacon Soaked in Doenjang Sauce vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.921
  6. Korean Traditional Natural Herbs and Plants as Immune Enhancing, Antidiabetic, Chemopreventive, and Antioxidative Agents: A Narrative Review and Perspective vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3059
  7. 야콘잎 분말을 첨가한 쿠키의 품질특성 vol.27, pp.1, 2010, https://doi.org/10.7318/kjfc.2012.27.1.082