• 제목/요약/키워드: 스트레인 에너지 함수

검색결과 3건 처리시간 0.016초

생체재료를 설명하는 스트레인 에너지 함수에 대한 이론적 고찰 (Theoretical Framework For Describing Strain Energy Function on Biomaterial)

  • 강태원
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.50-55
    • /
    • 2013
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. However, theoretical framework to describe and quantify the behaviour of blood vessel was not well established so far. For studying the biomechanical behavior of artery, Rubber-liked material which is similar to passive artery is selected since conventional theoretical interpretation is very limited to understand and predict the behavior of biomaterial. Rubber-like material is assumed to be very similar to artery and has properties of isotropy, homogeneity and is undergoing large deformation. Based on this assumption, stress developed on Rubber-like material is described by strain energy function and strain invariants which are required to understand the nonlinear elastic behavior of biomaterial. The descriptor which would be used for understanding the biomechanical behavior of artery is studied in this work.

생체 유사재료를 설명하는 물질 상수 추정 (Estimating Material Parameters of Rubber-liked Material Similar to Biomaterial)

  • 강태원
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.45-49
    • /
    • 2013
  • It is important to have a well developed strain energy function in order to understand the mechanical behavior of biomaterial like the blood vessel of artery. However, since it is not possible to have a complete form of strain energy function of artery, theoretical framework describing the behaviour of Rubber-like material which is similar to blood vessel is applied to infer useful forms of strain energy function of biomaterial. Based on Chuong-Fung model and Mooney-Rivlin model, material parameters are estimated based on experimental data. From the results, it can be inferred that the estimated parameters can be used to explain the difference of mechanical characteristics between normal vessel and vessel with stent.

비선형 탄성이론에 기초한 혈관류 생체재료 실험장치 (Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory)

  • 강태원
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.