• Title/Summary/Keyword: 스크류이론

Search Result 11, Processing Time 0.022 seconds

Analysis of Jacobian and Singularity of Planar Parallel Robots Using Screw Theory (스크류 이론을 이용한 평면형 병렬로봇의 자코비안 및 특이점 해석)

  • Choi, Jung-Hyun;Lee, Jeh-Won;Lee, Hyuk-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1353-1360
    • /
    • 2012
  • The Jacobian and singularity analysis of parallel robots is necessary to analyze robot motion. The derivations of the Jacobian matrix and singularity configuration are complicated and have no geometrical earning in the velocity form of the Jacobian matrix. In this study, the screw theory is used to derive the Jacobian of parallel robots. The statics form of the Jacobian has a geometrical meaning. In addition, singularity analysis can be performed by using the geometrical values. Furthermore, this study shows that the screw theory is applicable to redundantly actuated robots as well as non-redundant robots.

Pull-out Capacity of Screw Anchor Pile in Sand Using Reduced-Scale Model Tests (축소모형실험을 이용한 사질토 지반에 근입된 Screw Anchor Pile의 인발저항특성)

  • Kim, Dae-Hyun;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.121-133
    • /
    • 2013
  • This paper presents the results of an investigation into the pull-out capacity characteristics of screw anchor piles. Theoretical background of screw anchor pile (SAP) was first discussed. A series of reduced-scale model tests were performed on a number of cases with different SAP geometries such as pitch and diameter of screw as well as relative density of the model ground. The applicability of the pull-out capacity prediction equations were also examined based on the test results. It was shown that the pitch of screw has negligible effect on the pull-out capacity, while the diameter of screw has relatively large effect on pull-out capacity under a given condition. Practical implications of the findings from this study are discussed in great detail.

Mechanism and Measure of Chaotic Mixing in a Single-screw Extruder (단축 압축기에서의 카오스 혼합의 메카니즘과 혼합성능 정량와)

  • 권태헌
    • The Korean Journal of Rheology
    • /
    • v.8 no.1
    • /
    • pp.11-29
    • /
    • 1996
  • 스크류 채널 내에 주기적을 배리어를 설치함으로써 단축 스크류 압출 공정에서의 혼합 성능이 높여질수 있음이 S.J. Kim과 T.H. Kwom에 의해 밝혀진 바있다. 그들은 이새 로운 스크류를 통한 혼합이 카오틱하는 점으로부터 이 새로운 스크류를 카오스 스크류라고 명명했다. 우리는 카오스 스크류가 장착된 단축 압출공정에서 역학계 이론과 혼합운동학을 연계하여 연구를 수행하였다. 포인카레 단면을 통한 연구로부터 우리는 배리어의 배열이 islan의 크기에 대단히 밀접하게 관련되어 있음을 발견하였다. 연속적인 쉘 변형은 카오틱 유동에서 유체 요소를 지수 함수 형태로 늘이는 늘임과 접힘으로 이루어진 카오틱 혼합 메 카니즘을보여준다. 유체요소의 국부 늘임은 원리상으로는 계산되어질수 있으나 수치 해석상 의 어려운 점이 있다. 정규 유동에서와 달리 카오틱 유동에서는 입자 추적이 Runge-Kutta 적분중의 시간간격에 대단히 민감하다. 그래서 실제 사용될수 있는 시간 간격에 의해 계산 된 국부 늘임율 및 혼합효율의 정확도가 보장되어지지 않는다. 이러한 점들을 고려하여 우 리는 새로운 혼합 척도로 $\sigma$z를 제안하는데 이값은 비교적 긴 유체선분이 채널방향을 따라 늘어나는 비에 관련된 값이다. 배리어 영역의 길이가 짧을수록 $\sigma$z는 큰값으로 나타나지만 포인카레 단면에 의한 연구에 따르면 배리어의 주기가 너무 짧다면 두 개의 거대한 island 가 존재하는 것으로 밝혀졌다. 그리고 이러한 사실은 유체요소의 늘임비가 크다는 것이 항 상 좋은 혼합성능을 뜻하는 것은 아니라는 점을 보여준다. 이러한 관점에서 볼 때 혼합 스 크류를 설계하는데 있어서는 포인카레 단면을 병행하여 ${\sigma}_z$의 값을 사용하는 것이 바람직할 것이다.

  • PDF

High Altitude Simulating Test Facility Design Using Vacuum Pump System (진공펌프 시스템을 이용한 고도모의 시험장치 설계)

  • Hong, Yun Ky;Lee, Jung Min;Na, Jae Jung;Hyun, Dong Ki;Kim, Kyeong Su;Park, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1160-1164
    • /
    • 2017
  • In this research, a high altitude simulating test facility is designed using vacuum pump system composed of roots pumps and screw pumps. Air flow rate and chamber pressure are 1 kg/s and 2500 Pa, respectively. To design the test facility, experimental tests using certain pump combinations are performed for air injection of the order of hundreds of g/s. From the tests, it is found that 11 roots pumps and 33 screw pumps are required for the considered test facility. Test results are compared with theoretically estimated values. However, intake capacity theoretically estimated is found to be 20 percent larger than test results. This is thought because of higher pressure difference of roots pump for test conditions. Therefore, if more screw pumps are added for the considered pump system, it would be possible to lower the vacuum level of test chamber.

  • PDF

Development of Simulnation Program of Screw Driving Weft Insertion Mechanism for Rapier Loom (래피어 직기용 스크류 구동 위입기구의 시뮬레이션 프로그램 개발)

  • Kim, Jong-Su;Seong, Baek-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.101-110
    • /
    • 2000
  • Weft insertion mechanism is for completing the structure of yarn and weft yarn and its driving method is screw type. In the high speed rapier loom, weft yarn is thrown by insert rapier and carrier rapier into the shed which make divide two parts of upper part ant lower part for warp yarn. It is possible for this mechannism to reduce the size of rapier and wheel, and directly connected to the main shaft without gear belt. Therefore, exact rapier motion through realization of arbitrary acceleration diagram requested rapier and optimal design for high speedization and operating rate increasing are necessary. In this study, with a view to exact system analysis for understanding of overall trace and high speedization of rapier loom through computer simulation. we report not only deduction of displacement, velocity, and acceleration components of rapier for analysis theory establishment, of weft insertion mechanism and exact motion induction according to screw rotation, but also development of simulation program for realization these on the monitor.

  • PDF

An Application of Screw Motions for Mechanical Assemblies (기계부품들의 조립 및 해체과정 설계를 위한 스크류이론의 응용)

  • 김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • CAD systems offer a variety of techniques for designing and rendering models of static 3D objects and even of mechanisms, but relatively few tools exist for interactively specifying arbitrary movements of rigid bodies through space. Such tools are essential, not only for artistic animation, but also, for planning and demonstrating assembly and disassembly procedure of manufactured products. A rigid body motion is a continuous mapping from the time domain to a set of positions. To relieve the designers from the burden of specifying this mapping in abstract mathematical terms, combinations of simple rigid motion primitives, such as linear translations or constant axis rotations, are often used. These simple motions are planar and thus ill-suited for approximating arbitrary motions in 3D-space. Instead, we propose the screw motion primitive, a special combination of linear translations and constant axis rotations, which has a simple geometric representation that can be automatically and unambiguously computed from the starting and ending positions of the moving body. Although, any two positions may be interpolated by an infinity of motions, we chose the screw motion for its relative generality and its computational advantages. The paper covers original algorithms for computing the screw motions from interpolated positions and envelopes of swept regions to predict collisions.

  • PDF

Performance of Pressure Swirl Injector using Screw Type Swirler for Combustor in a Supersonic Engine (Part I. Performance of Control Group Injector) (초음속 엔진용 연소기를 위한 스크류형 선회기를 장착한 압력선회형 인젝터의 성능(Part I. 기준 인젝터의 성능))

  • Hwang, Yong-Seok;Lee, Jang-Woo;Lee, Sang-Youn;Jeong, Hae-Seung;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.258-263
    • /
    • 2008
  • Performance of injector equiped with screw type swirler which is suitable for supersonic cruise engine combustor was investigated using theoretical, numerical, and experimental methods. Based on discharge coefficient and spray angle which represent the performance of injectors, the geometrical parameters which affect these performance parameters were defined, control group injectors were designed, and variation of performance parameters according to the geometrical parameters were examined. Within the defined range, measured value of performance of injectors was smaller than result of theoretical prediction, and prediction result from numerical simulation using VOF method agreed with the result of experiments very well. The viscous barrier was not observed, and minimum discharge coefficient and maximum spray angle, 0.05 and 104 respectively, was obtained for this type of injector.

Simulation of Fuzzy Logic Controller for Food Extrusion Process (압출성형공정 퍼지제어기의 모의실험)

  • Lee, Seung-Ju;Won, Chee-Sun;Han, Ouk;Mok, Chul-Kyoon;Lee, Byeong-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.164-169
    • /
    • 1995
  • Fictitious experiment to control extrusion process was carried out using the fuzzy theory. Algorithm of the fuzzy logic controller(FLC) was made based on the general principles of extrusion. In the simulation, at first, thickness of extrudate was measured as feedback input variable. Secondly, a set point of screw speed was determined as output variable of extruder operating condition through FLC. Finally, the thickness of extrudate was controlled as a given set point. Barrel heater was simply controlled as on/off state, which was not fuzzy controlled.

  • PDF

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Model test on operation efficiency in the screw conveyor of shiled TBM in soft ground (축소모형시험을 통한 연약지반 shield TBM의 screw conveyor 배토효율에 관한 연구)

  • Oh, Tae-Sang;Kim, Sang-Hwan;Kim, Won-Kyung;Lee, Hye-Yoon;Shin, Min-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.203-211
    • /
    • 2014
  • This paper presents the screw conveyor operation efficiency of shield TBM in soft ground. In order to study the screw conveyor operation efficiency, the experimental and theoretical studies were carried out. In experimental study, the operating amounts of muck were examined and compared due to the screw conveyor operating parameters including types (Shaft and Ribbon screw), angles of screw and conveyor. The results obtained from the laboratory model tests were analysed and evaluated to suggest the most suitable muck operating parameters during the shield TBM tunnelling in soft ground. In conclusion, it is found the operation parameters to increase the screw conveyor efficiency. In addition, the information presented in this paper may be useful for developing the design technology of shield TBM in the future.