• Title/Summary/Keyword: 스캔 방향

Search Result 146, Processing Time 0.032 seconds

Performance analysis of tunnel scanning system based on Japanese performance evaluation system (일본 성능평가 제도기반 터널 스캐닝 시스템 성능 분석)

  • Chulhee Lee;Jaemo Kang;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.331-344
    • /
    • 2023
  • The performance of the existing tunnel scanning system was analyzed through the post-evaluation of NETIS (New Technology Information System) and Inspection Support Technology Performance Catalog. Suggestions for improvement and development direction of the tunnel scanning system were deduced. As new technology of Japan gave priority to providing user-centered information, it was possible to objectively compare and analyze the characteristics of various tunnel scan systems through post-evaluation of NETIS and standard test methods in the Inspection Support Technology Performance Catalog. Construction New Technology of Korea was centered on suppliers of technology certification, making it impossible to objectively compare the performance of tunnel scanning systems. The performance was compared and evaluated indirectly by comparing the specifications of the camera, which is a core device of Japan's tunnel scanning system. For the future development of tunnel scanning systems, high-resolution and fast exposure performance of cameras and corresponding high-intensity lighting devices are required. For this purpose, it is necessary to make an experimental environment in which the performance of the camera and lighting can be analyzed indoors.

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Introduction and feasibility study of the HD-270 MLC (HD-270 MLC의 소개 및 유용성평가)

  • Kim Dae Young;Kim Won Taek;Lee Hwa Jung;Lee Kang Hyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • I. Purpose The multileaf collimator(MLC) has many advantages, but use of the MLC increased effective penumbra and isodose undulation in dose distribution compared with that of an alloy block. In this work, we introduced the HD-270 MLC, which can improve the above disadvantages of MLC, and reported its feasibility study. II. Method and Materials The HD-270 MLC is a technique which combines the use of the existing Siemens multileaf collimator(3D MLC) with patient translation perpendicular to the leaf plane. The technique produces a smoothed isodose distribution with the reduced isodose undulation and effective penumbra. To assess the efficacy of the HD-270 technique and determine the appropriate resolution, a polygonal shaped MLC field was made to produce field edge angles from 0 degree to 75 degree with a step of 15 degree. Each HD-270 group was generated according to the allowed resolution, i. e., 5, 3, and 2mm. The experiment was carried out on Primus, a Siemens linear accelerator configured with HD-270 MLC. The total 60 MU of 6 MV photon beam was delivered to X-Omat film(Kodak, USA) at a SAD of 100 cm and 1.5 cm depth in solid water phantom. Exposed films were scanned by Lumiscan75(LUMISYS) and analyzed using RIT113 software(Radiological Imaging Technology Inc., USA). To test the mechanical accuracy of table movement, the transverse, longitudinal, and vertical positions were controlled by a consol with ${\pm}5\;mm,\;{\pm}4\;mm,\;{\pm}3\;mm,\;and\;{\pm}2\;mm$ steps, and then measured using a dial gauge with an accuracy of 0.001 inch. During the experiments, the table loaded with about 50Kg human phantom to simulate the real treatment situation. III. Results The effective penumbra and isodose undulation became larger with increase the resolution and field edge angle. The accuracy of the table movement on each direction is good within the ${\pm}1\;mm$. IV. Conclusion Clinical use of the MLC can be increased by using of the HD-270 MLC which complements to the disadvantages of the MLC.

  • PDF

Shipborne Mobile LiDAR(Light Detection and Ranging) System for the Monitoring of Coastal Changes (해안지형 모니터링을 위한 해상모바일라이다 지형 측정 시스템 구축)

  • Kim, ChangHwan;Kim, HyunWook;Kang, GilMo;Kim, GiYoung;Kim, WonHyuck;Park, ChanHong;Do, JongDae;Lee, MyoungHoon;Choi, SoonYoung;Park, HyeonYeong
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land. Regular monitoring of coastal changes is essential at key locations with such volatility. But the survey method of terrestial LiDAR(Light Detection and Ranging) system has much time consuming and many restrictions. For effective monitoring coastal changes, KIOST(Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system, installed in a research vessel, comprised a land based LiDAR(RIEGL LMS-420i), an IMU(MAGUS Inertial+), a RTKGNSS(LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land based LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. We conducted test measurements in the Anmok-Songjung beach around the Gangneung port. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.

Statistical Analysis of Operating Efficiency and Failures of a Medical Linear Accelerator for Ten Years (선형가속기의 10년간 가동률과 고장률에 관한 통계분석)

  • Ju Sang Gyu;Huh Seung Jae;Han Youngyih;Seo Jeong Min;Kim Won Kyou;Kim Tae Jong;Shin Eun Hyuk;Park Ju Young;Yeo Inhwan J.;Choi David R.;Ahn Yong Chan;Park Won;Lim Do Hoon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.186-193
    • /
    • 2005
  • Purpose: To improve the management of a medical linear accelerator, the records of operational failures of a Varian CL2l00C over a ten year period were retrospectively analyzed. Materials and Methods: The failures were classified according to the involved functional subunits, with each class rated Into one of three levels depending on the operational conditions. The relationships between the failure rate and working ratio and between the failure rate and outside temperature were investigated. In addition, the average life time of the main part and the operating efficiency over the last 4 years were analyzed. Results: Among the recorded failures (total 587 failures), the most frequent failure was observed in the parts related with the collimation system, including the monitor chamber, which accounted for $20\%$ of all failures. With regard to the operational conditions, 2nd level of failures, which temporally interrupted treatments, were the most frequent. Third level of failures, which interrupted treatment for more than several hours, were mostly caused by the accelerating subunit. The number of failures was increased with number of treatments and operating time. The average life-times of the Klystron and Thyratron became shorter as the working ratio increased, and were 42 and $83\%$ of the expected values, respectively. The operating efficiency was maintained at $95\%$ or higher, but this value slightly decreased. There was no significant correlation between the number of failures and the outside temperature. Conclusion: The maintenance of detailed equipment problems and failures records over a long period of time can provide good knowledge of equipment function as well as the capability of predicting future failure. Wore rigorous equipment maintenance Is required for old medical linear accelerators for the advanced avoidance of serious failure and to improve the qualify of patient treatment.

Active Inferential Processing During Comprehension in Poor Readers (미숙 독자들에 있어 이해 도중의 능동적 추리의 처리)

  • Zoh Myeong-Han;Ahn Jeung-Chan
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.2
    • /
    • pp.75-102
    • /
    • 2006
  • Three experiments were conducted using a verification task to examine good and poor readers' generation of causal inferences(with because sentences) and contrastive inferences(with although sentences). The unfamiliar, critical verification statement was either explicitly mentioned or was implied. In Experiment 1, both good and poor readers responded accurately to the critical statement, suggesting that both groups had the linguistic knowledge necessary to the required inferences. Differences were found, however, in the groups' verification latencies. Poor, but not good, readers responded faster to explicit than to implicit verification statements for both because and although sentences. In Experiment 2, poor readers were induced to generate causal inferences for the because experimental sentences by including fillers that were apparently counterfactual unless a causal inference was made. In Experiment 3, poor readers were induced to generate contrastive inferences for the although sentences by including fillers that could only be resolved by making a contrastive inference. Verification latencies for the critical statements showed that poor readers made causal inferences in Experiment 2 and contrastive inferences in Experiment 3 doting comprehension. These results were discussed in terms of context effect: Specific encoding operations performed on anomaly backgrounded in another passage would form part of the context that guides the ongoing activity in processing potentially relevant subsequent text.

  • PDF

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.