• Title/Summary/Keyword: 스위칭소자

Search Result 752, Processing Time 0.026 seconds

Transformerless DGS Control using a Z-source Boost Inverter (Z-원 승압인버터를 이용한 변압기 없는 DGS제어)

  • Park Young-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1617-1624
    • /
    • 2006
  • This paper presents system modeling, modified space vector PWM implementation and design of a closed loop controller of the Z-source inverter which consists of L and C components and shoot-through zero vectors for DGS. Zero vector periods of SVPWM utilized to boost DC-link voltage instead of conventional DC/DC converter and transformer. Only two shoot-through vut(nn are used for DC link voltage control during one switching period without loss of non-zero vectors. Discrete time sliding mode controller, robust servomechanism controller are designed to realize fast and no-overshoot current response and a steady state voltage error. Simulation results are shows the effectiveness of the proposed algorithm.

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kno Ae-Sook;Kim Tae-Yun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the harmonic content is eliminated by the phase shaft between two PWM converters switching phase. VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

A Study on the Dual-band VCO for Mobile Communication Terminal using Oscillation Part Switching Circuit (발진부 귀환 스위칭회로를 이용한 이동통신 단말기용 듀얼대역 전압제어 발진기 특성에 관한 연구)

  • 오태성;이영훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • In this paper, the dual band VCO of mobile communication terminal using oscillation part switching circuit is proposed. In order to model the VCO accurately, the resonator is converted the equivalent circuit which is analyzed to use numerical method and designed optimal the dual band VCO operating GSM and DCS band. In order to demonstrate the objective theory of the proposed VCO, the dual band VCO is designed and experimented. The results of experiment, it is conformed that the VCO can be used mobile communication hand phone and components of three generation mobile communication systems.

A Novel Energy Recovery Circuit for AC PDPs with Reduced Sustain Voltage (새로운 유지구동전압 저감형 AC PDP용 에너지 회수회로)

  • Lim, Seung-Bum;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.494-501
    • /
    • 2006
  • In this paper, a novel energy recovery circuit for AC PDPs(Plasma Display Panels) with reduced sustain voltage is proposed to improve the performance of conventional circuits such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver for AC PDPs, however, there is no energy recovery circuit. In the proposed circuit, the efficiency is heightened by installing in energy recovery circuit and the loss of switching device is reduced by performing the zero voltage switching or zero current switching. Although the energy recovery circuit is added, the number of active switching elements of the proposed circuit is the same as that of the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations and experimentation.

Analysis of Inverter Losses according to Switching Frequency Using Electric Motor for Aircraft (스위칭 주파수에 따른 전기 추진 항공기용 인버터 손실 분석)

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Electric propulsion aircraft are being actively researched in the aviation field in recent years to solve environmental and noise problems caused by existing gas turbine engine. In particular, research on a thrust motor as a core component of an electric power propulsion system and an inverter for driving it is actively being conducted. In this paper, a motor with high specific power is selected to determine characteristics of aircraft that are sensitive to weight and volume. Power loss of the inverter is then simulated. In the simulation, the selected motor and power device were modeled using PSIM, a power electronics analysis tool. Inverter power loss according to switching frequency was then analyzed.

Current-Voltage Characteristics with Substrate Bias in Nanowire Junctionless MuGFET (기판전압에 따른 나노와이어 Junctionless MuGFET의 전류-전압 특성)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.785-792
    • /
    • 2012
  • In this paper, a current-voltage characteristics of n-channel junctionless and inversion mode(IM) MuGFET, and p-channel junctionless and accumulation mode(AM) MuGFET has been measured and analyzed for the application in high speed and low power switching devices. From the variation of the threshold voltage and the saturation drain current with the substrate bias voltages, their variations in IM devices are larger than junctionless devices for n-channel devices, but their variations in junctioness devices are larger than AM devices for p-channel devices. The variations of transconductance with substrate biases are more significant in p-channel devices than n-channel devices. From the characteristics of subthreshold swing, it was observed that the S value is almost independent on the substrate biases in n-channel devices and p-channel junctionless devices but it is increased with the increase of the substrate biases in p-channel AM devices. For the application in high speed and low power switching devices using the substrate biases, IM device is better than junctionless devices for n-channel devices and junctionless device is better than AM devices for p-channel devices.

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.

Select Power Device for Reduction of Switching loss In Single Phase Grid Connected Inverter (Switch loss 저감을 위한 단상인버터 Power Device 선정)

  • Lee, Jong-Uk;Lee, Seung-Ju;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.165-166
    • /
    • 2016
  • 본 논문에서는 Common-Mode Noise가 저감된 계통연계형 단상인버터의 파워소자선정에 따른 스위칭 손실 저감을 제안한다. 풀브리지 회로에서 상용전원 레퍼런스 주파수로 상보적인 스위칭 신호를 주는 PWM_1구간에는 비교적 천천히 스위칭하기 때문에 컨덕션 loss가 적은 IGBT를 사용하며, 보다 빠른 스위칭 주파수로 동작하는 PWM_2구간에서는 Switching loss가 적은 MOSFET을 사용하여 전체적인 스위치에서 발생되는 손실을 저감한다.

  • PDF

Trans-Z-souce Inverter using lossless snubber (무손실 스너버를 적용한 트랜스-Z-소스 인버터)

  • Choi, Seokmin;Kim, Heung-Geun;Cha, Honnyong;Jun, Tae-won;Nho, Eui-cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.52-53
    • /
    • 2013
  • Z-소스 인버터는 스위치의 암 단락과 개방을 이용한 인버터로써 기존의 전압형과 전류형 인버터의 단점을 개선하면서 승압 및 강압 기능을 동시에 가질 수 있다. 하지만 주전원과 스위치 회로 사잉에 위치한 임피던스 네트워크 때문에 스위칭 소자에 과도한 전압 오버슈트가 발생하며, 암 단락으로 인한 스위칭 손실이 기존의 전압형 인버터보다 증가하게 되는 단점이 있다. 본 논문에서는 소프트 스위칭 구현이 가능한 무손실 스너버를 적용한 소프트 스위칭 트랜스-Z-소스 인버터를 제안한다.

  • PDF

Loss Comparison of Half and Full Bridge Converter according to Switching Methods (하프 및 풀 브리지 컨버터의 스위칭 방법에 따른 손실비교)

  • Ko, Eu-Sock;Lee, Dong-Hyun;Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.99-100
    • /
    • 2013
  • 기존 용접 컨버터는 풀 브릿지 컨버터는 하드스위칭을 하게 되는데, 이는 스위칭 소자로 사용되는 IGBT의 턴 오프 손실을 증가시키는 단점을 가지고 있다. 본 논문에서는 스위치의 손실을 줄이고자 기존의 풀 브릿지 컨버터에 ZVS(zero voltage switching) 턴 오프 방식를 적용한 회로와 하드 스위칭 방법에 대하여 손실을 PSIM 모의해석을 통하여 비교 분석하였다.

  • PDF