• Title/Summary/Keyword: 스마트-시티

Search Result 649, Processing Time 0.031 seconds

Evaluation of hydrologic risk of drought in Boryeong according to climate change scenarios using scenario-neutral approach (시나리오 중립 접근법을 활용한 기후변화 시나리오에 따른 보령시 가뭄의 수문학적 위험도 평가)

  • Kim, Jiyoung;Han, Young Man;Seo, Seung Beom;Kim, Daeha;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.225-236
    • /
    • 2024
  • To prepare for the impending climate crisis, it is necessary to establish policies and strategies based on scientific predictions and analyses of climate change impacts. For this, climate change should be considered, however, in conventional scenario-led approach, researchers select and utilize representative climate change scenarios. Using the representative climate change scenarios makes prediction results high uncertain and low reliable, which leads to have limitations in applying them to relevant policies and design standards. Therefore, it is necessary to utilize scenario-neutral approach considering possible change ranges due to climate change. In this study, hydrologic risk was estimated for Boryeong after generating 343 time series of climate stress and calculating drought return period from bivariate drought frequency analysis. Considering 18 scenarios of SSP1-2.6 and 18 scenarios of SSP5-8.5, the results indicated that the hydrologic risks of drought occurrence with maximum return period ranged 0.15±0.025 within 20 years and 0.3125±0.0625 within 50 years, respectively. Therefore, it is necessary to establish drought policies and countermeasures in consideration of the corresponding hydrologic risks in Boryeong.

Analysis of biodiversity change trend on urban development project - Focusing on terrestrial species in Environmental Impact Assessment - (도시의 개발 사업에 따른 생물다양성 변화 추세 분석 - 환경영향평가의 육상 동물종을 중심으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Jeon, Yoon-Ho;Choi, Ji-Young;Kim, Shin-Woo;Hwang, Hye-Mi;Kim, Da-Seul;Moon, Hyun-Bin;Bae, Ji-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.21-32
    • /
    • 2023
  • The Environmental Impact Assessment (EIA) plays a pivotal role in predicting the potential environmental impacts of proposed developments and planning appropriate mitigation measures to minimize effects on species. However, as concerns over biodiversity loss rise, there's ongoing debate about the efficacy of these mitigation plans. In this study, we utilized data from EIAs and post-environmental impact surveys to understand the trends in biodiversity during construction and operation phases. By examining 30 urban development projects, we categorized species richness indices of mammals, birds, amphibians, and reptiles into pre-construction, during construction, and post-construction operational stages. The biodiversity trends were analyzed based on the rate of change in these indices. The results revealed three distinct biodiversity change patterns: (A) An initial increase in biodiversity indices post-development, followed by a gradual decline over time; (B) a sustained increase in biodiversity as a result of mitigation measures; and (C) a continuous decline in biodiversity post-development. Furthermore, all species exhibited a higher rate of biodiversity decline during the construction phase compared to the operational phase, with mammals showing the most significant rate of change. Notably, the biodiversity change rate during operation was generally lower than during construction. In particular, mammals seemed to be most influenced by mitigation measures, displaying the smallest rate of change. This study provides empirical evidence on the efficacy of mitigation measures and deliberates on ways to enhance their effectiveness in minimizing the adverse impacts of urban development on biodiversity. These findings can serve as foundational data for addressing terrestrial biodiversity reduction.

Investigation of Drought Propagation and Damage Characteristics Using Meteorological and Hydrological Drought Indices (기상학적 및 수문학적 가뭄지수를 활용한 가뭄 전이 및 피해 특성 분석)

  • Kim, Ji Eun;Son, Ho-Jun;Kim, Taesik;Kim, Won-Beom;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.291-302
    • /
    • 2024
  • Sustained meteorological drought can lead to hydrological drought, known as drought propagation. The propagated droughts cause more damage to the region than the non-propagated droughts. Recent studies on drought propagation have focused on identifying the lag time using correlation analysis. There is a lack of studies comparing damage patterns between propagated and non-propagated droughts. In this study, the overlap and pooling propagation between meteorological and hydrological droughts were analyzed using drought indices in Chungcheong Province to identify drought propagation, and the propagation characteristics such as pooling, attenuation, lag and extension were analyzed. The results showed that although Chungju-si experienced a meteorological drought in 2010, no damage was caused by the drought. However, a meteorological drought in 2017 and 2018 propagated into a hydrological drought of longer duration but less severity, resulting in drought-affected damage. Similarly, Cheongyang-gun experienced a meteorological drought in 2017, but no damage was reported from the drought. However, in the neighboring county of Buyeo-gun, a meteorological drought with a similar magnitude propagated to a hydrological drought during the same period, resulting in drought-affected damage. The overall results indicated that the damage from propagated drought events was more severe than the non-propagated drought events, and these results can be used as basic data for establishing drought response policies suitable for the region.

Derivation of Driving Stability Indicators for Autonomous Vehicles Based on Analyzing Waymo Open Dataset (Waymo Open Dataset 기반 자율차의 주행행태분석을 통한 주행안정성 평가지표 도출)

  • Hoyoon Lee;Jeonghoon Jee;Cheol Oh;Hoseon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.94-109
    • /
    • 2024
  • As autonomous vehicles are allowed to drive on public roads, there is an increasing amount of on-road data available for research. It has therefore become possible to analyze impacts of autonomous vehicles on traffic safety using real-world data. It is necessary to use indicators that are well-representative of the driving behavior of autonomous vehicles to understand the implications of them on traffic safety. This study aims to derive indicators that effectively reflect the driving stability of autonomous vehicles by analyzing the driving behavior using the Waymo Open Dataset. Principal component analysis was adopted to derive indicators with high explanatory capability for the dataset. Driving stability indicators were separated into longitudinal and lateral ones. The road segments on the dataset were divided into four based on the characteristics of each, which were signalized and unsignalized intersections, tangent road section, and curved road section. The longitudinal driving stability was 35.48% higher in the curved road sections compared to the unsignalized intersections. With regard to the lateral driving stability, the driving stability was 76.08% higher in the signalized intersections than in the unsignalized intersections. The comparison between curved and tangent road segments showed that tangent roads are 146.87% higher regarding lateral driving stability. The results of this study are valuable for the further research to analyze the impact of autonomous vehicles on traffic safety using real-world data.

A Study on Status of Landscape Architecture Industry with National Statistics (국가통계자료를 활용한 조경산업 현황 연구)

  • Choi, Ja-Ho;Yoon, Young-Kwan;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.40-53
    • /
    • 2022
  • This study carried out to provide the methodology and basic status material of using Korean national statistics needed to find the actual state of the landscape architecture industry. The landscape architecture industry was classified into 'Design', 'Construction Management', 'construction', 'Maintenance & Management', 'Materials', 'Research', 'Education', and 'Administration' areas. In each field, business types were systemized and associated in accordance with Korean standard industrial classification and legislations pertinent to construction. Among them, the business types directly defined in the construction related legislations under the Ministry of Land, Infrastructure and Transport were focused on, and the establishment, association, integration, distribution, duplication, and omission of national statistics were analyzed. As a result, the business types of statistical analysis were selected. In order for commonality of statistical items and minimized error of interpretation, semantic analysis was conducted. Finally, the number of registered business types, the number of workers, and sales were selected. Based on them, the analysis framework applicable to fundamental analysis and evaluation of the actual state of the industry was proposed. Actual national statical data were applied for analysis and evaluation. In 2019, the number of registered business types related to the landscape architecture industry was 12,160, the number of workers by business type was 106,296, and the sales by business type were 8,308.5 billion KRW. The number of registered business types and the number of workers had been on the rise from 2017, whereas the sales had been on the decrease. It is required to come up with a plan for industrial development. This study was conducted with the national statistics established by multiple public institutions, so that there are limitations in securing consistency and reliability. Therefore, it is necessary to establish systematic and consistent national statistics in accordance with 「Landscaping Promotion Act」. In the future, it will planned to research application and development plans of national statistics according to subjects including park and green.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Estimating design floods based on bivariate rainfall frequency analysis and rainfall-runoff model (이변량 강우 빈도분석과 강우-유출 모형에 기반한 설계 홍수량 산정 방안)

  • Kim, Min Ji;Park, Kyung Woon;Kim, Seok-Woo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.737-748
    • /
    • 2022
  • Due to the lack of flood data, the water engineering practice calculates the design flood using rainfall frequency analysis and rainfall-runoff model. However, the rainfall frequency analysis for arbitrary duration does not reflect the regional characteristics of the duration and amount of storm event. This study proposed a practical method to calculate the design flood in a watershed considering the characteristics of storm event, based on the bivariate rainfall frequency analysis. After extracting independent storm events for the Pyeongchang River basin and the upper Namhangang River basin, we performed the bivariate rainfall frequency analysis to determine the design storm events of various return periods, and calculated the design floods using the HEC-1 model. We compared the design floods based on the bivariate rainfall frequency analysis (DF_BRFA) with those estimated by the flood frequency analysis (DF_FFA), and those estimated by the HEC-1 with the univariate rainfall frequency analysis (DF_URFA). In the case of the Pyeongchang River basin, except for the 100-year flood, the average error of the DF_BRFA was 11.6%, which was the closest to the DF_FFA. In the case of the Namhangang River basin, the average error of the DF_BRFA was about 10%, which was the most similar to the DF_FFA. As the return period increased, the DF_URFA was calculated to be much larger than the DF_FFA, whereas the BRFA produced smaller average error in the design flood than the URFA. When the proposed method is used to calculate design flood in an ungauged watershed, it is expected that the estimated design flood might be close to the actual DF_FFA. Thus, the design of the hydrological structures and water resource plans can be carried out economically and reasonably.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.