• Title/Summary/Keyword: 스마트 ITS

Search Result 1,466, Processing Time 0.039 seconds

Generation and Management of Strong Passwords using an Ownership Verified Smartphone (소유권 확인된 스마트폰을 이용한 강력한 패스워드 생성 및 관리)

  • Park, Jun-Cheol
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Enforcing additional authentication to password-based authentication, in addition to attempting to increase the security of the password itself, helps to improve the security of the password authentication scheme. For a well-known problem of using strong passwords that differ from site to site, we propose a scheme for password generation and management with an inherent supplementary authentication. Like the so-called password manager, the scheme retrieves and presents a strong site-specific password whenever requested without requiring the user to remember multiple passwords. Unlike the existing methods, however, the scheme permits the password retrieval process to proceed only through the authenticated user's ownership verified smartphone. Hence, even for sites not enforcing or supporting two-factor authentication, the logon process can benefit from the scheme's assurance of enhanced security with its two-factor equivalent authentication. The scheme can also prevent an attacker from impersonating a user or stealing secrets even when the stored information of the server for password retrieval service or the user's smartphone is leaked.

Security Core Technology Implementation for Hardware-based Smart Devices (HW기반 스마트 단말 보안 핵심기술 구현)

  • Kim, Jeong Nyeo
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.501-505
    • /
    • 2016
  • Recently, the frequency of dealing important information regarding financial services like paying through smart device or internet banking on smart device has been increasing. Also, with the development of smart device execution environment towards open software environment, it became easier for users to download and use random application software, and its security aspect appears to be weakening. This study inspects features of hardware-based smart device security technology. Furthermore, this study proposes a realization method in MTM hardware-based secure smart device execution environment for an application software that runs in smart devices. While existing MTM provides the root of trust function only for the mobile device, the MTM-based mobile security environment technology proposed in this paper can provide numerous security functions that application program needs in mobile device. The further researches on IoT devices that are compatible with security hardware, gateway security technology and methods that secure reliability and security applicable to varied IoT devices by advancing security hardware are the next plan to proceed.

Application of Smart Base Isolation System for Seismic Response Control of an Arch Structure (아치구조물의 지진응답제어를 위한 스마트 면진시스템의 적용)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2011
  • Base isolation system is widely used for reduction of dynamic responses of structures subjected to seismic load. Recently, research on a smart base isolation system that can effectively reduce dynamic responses of the isolated structure without accompanying increases in base drifts has been actively conducted. In this study, a smart base isolation system was applied to an arch structure subjected to seismic excitation and its control performance for reduction of seismic responses was evaluated. In order to make a smart base isolation system, 4kN MR dampers and low damping elastomeric bearings were used. Seismic response control performance of the proposed smart base isolation system was compared to that of the optimally designed lead-rubber bearing(LRB) isolation system. To this end, an artificial ground motion developed based on KBC2009 design response spectrum was used as a seismic excitation. Fuzzy control algorithm was used to control MR damper in the smart base isolation system and multi-objective genetic algorithm was employed to optimize the fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system can drastically reduce base drifts and seismic responses of the example arch structure in comparison with LRB isolation system.

A Study on the Change and Improvement of Smart Grid Policy after the Great East Japan Earthquake (동일본대지진 이후 일본 스마트그리드 정책의 변천과 개선방안 연구)

  • Lee, Jum-Soon
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.41-53
    • /
    • 2017
  • This study focuses on the current state of Smart Grid policy in Japan and its problems while the interest in Smart Grid has been increasing since the March 2011 earthquake in East Japan. As a result of the analysis, Japan introduced the fixed price buying system of new and renewable energy in response to the power supply and demand problem caused by the 2011 earthquake in East Japan, and established a decentralized green electricity trading market in which electricity generated from new and renewable energy is traded Smart Grid-related projects were implemented as a solution to solve energy crisis and environmental problems at the same time. As a result, we achieved visible results such as suppressing peak power, reducing CO2 emissions, and securing stable supply and demand of energy using renewable energy sources. On the other hand, the improvement of current Smart Grid policy operation in Japan and the introduction of stabilization system of power system, promotion of international standards of domestic technology related to smart grid, and support for strengthening security of smart grid.

An Empirical Study on Continuous Use Intention and Switching Intention of the Smart Factory (스마트 팩토리의 지속사용의도와 전환의도에 관한 실증연구)

  • Kim, Hyun-gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.65-80
    • /
    • 2019
  • With the advent of the ICT-based 4th industrial revolution, the convergence of the manufacturing industry and ICT seems to be the new breakthrough for achieving the company's competitiveness and play a role on the key element for accelerating the revival of the manufacturing industry. When the smart factory is implemented, each plant can analyze the quantity of data collected, build the data-driven operation systems which can make decisions, and ultimately discover the correlation among many events in the manufacturing sites. As the customers' needs become diversified more and more, it is required for the company to change its operating method from large quantity batch production systems to customizable and flexible manufacturing systems. For performing this requirements, it is essential for the company to adopt the smart factory. Based on technology acceptance model (TAM), this study investigates the factors influencing continuous use intention and switching intention of the smart factory. To do so, a questionnaire survey is conducted both online and offline. 122 samples are used for the study analysis. The results of this study will provide many implications with many researchers and practitioners relevant smart factories.

Cloud Platform for Smartfarm (스마트팜을 위한 클라우드 플랫폼)

  • Lee, Meong-hun;Yi, Se-yong;Kim, Joon-yong;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.496-499
    • /
    • 2016
  • The smartfarm is a leader in the Field of environmental monitoring in agriculture. By the use of wireless remote systems, monitoring applications of the smartfarm are able to provide vital information to the farmer wherever he may be. Absentee farmers are finding the ease of viewing the application graphs on their mobile phone is providing them with peace of mind. We design system and technical requirements of service for managing and operating smart-farm based on cloud technology. It describes requirements of cloud technology for monitoring, controlling, managing, and operating cloud-based smart farm. Smart farm system and service with cloud platform contains 3 interfaces and 3 services. In addition, smart-farm using cloud platform could have several cases so it should be established and managed in varying way depending on cultivars, its size and type. This paper will focus the industry's attention on the importance of Open/Standard Cloud platform thereby stimulating the smartfarm in agriculture.

  • PDF

Proposed that Application of the Security Algorithm for Implement Smart m-Gov (스마트 전자정부 구현을 위한 보안 알고리즘 응용 제안)

  • Rim, Kwang-Cheol;Choung, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • As ICT Ecosystem does, electronic government changes in its form. Accordingly, in order to realize Smarter m-Gov, the governments need to vitalize m-Gov services and enact technology policy. Therefor, this manuscript suggests possible model of m-Gov realization and security algorithm as a technology policy which applies quantum cryptography system to server security for the construction of secured m-Gov's infrastructure. What the manuscript suggests seeks administrative ideas of Smarter m-Gov's services which contain security, stability, and economic feasibility for the benefits of nation and enterprises.

FEM Analysis of Smart Skin Structure Specimen (스마트 스킨 구조물 시편의 유한요소 해석)

  • 전지훈;황운봉
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • FEM analysis of the smart skin structure, and application of the sandwich structures investigated. The honeycomb manufactures only provide stillness of thickness direction and transverse shear modulus. Although these are dominant mechanical properties. the other mechanical properties are needed in FEM analysis. Hence, this work shows procedures of obtaining those mechanical properties. Honeycomb material was assumed to be ar, isotropic material and properties are estimated by its dominant honeycomb properties. The other honeycomb properties are then obtained by mechanical properties of Nomex. Buckling test and three point bending test were simulated by ABAQUS. Both the shell and solid element models were used. The results were compared with experimental results and analytical approaches. They showed good agreements. This study shows a guideline of FEM analysis of smart skin structure using commercial a FEM package.

Development of IEEE1451-based Smart Module for Automated Transfer Crane System (자동화 크레인 시스템을 위한 IEEE1451 기반 스마트 모듈 개발)

  • Ha Kyoung-Nam;Kim Man-Ho;Lee Kyung-Chang;Lee Suk
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.251-256
    • /
    • 2005
  • Today's port system,; require larger and faster operation of transfer cranes in order to accommodate rapidly increasing traffic. These cranes need precise control of their components for operational efficiency. This paper presents an IEEE 1451 based smart module that allows numerous sensors and actuators of the crane to attach themselves to various networks more easily. The smart module has been experimentally evaluated on a CAN network for its performance.

A Method for Generating Rule-based Fault Diagnosis Knowledge on Smart Home Environment (스마트 홈 환경에서 규칙 기반의 오류 진단 지식 생성 방법)

  • Ryu, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2741-2749
    • /
    • 2009
  • There have been many researches to detect and recover from faults on smart home environment, because these faults should lower its reliability. while, most of these researches have addressed functional defects of devices or software malfunction, few attempts have been made to deal with faults which may occur due to the inter relationships among devices. In this paper, we define the relationships among devices as rules, and propose a method for generating fault diagnosis knowledge which defines the symptoms and causes of faults. We classify the contexts of devices into two sets, depending on whether it satisfies the rules or not. when this method is applied to smart home environment, it is feasible not only to detect faults that may occur due to the relationships among devices but to identify their causes at real time.