• 제목/요약/키워드: 스마트 필터

검색결과 219건 처리시간 0.021초

시각장애인의 정보 접근성 향상을 위한 모바일 신문 어플리케이션 인터페이스 (A Mobile Newspaper Application Interface to Enhance Information Accessibility of the Visually Impaired)

  • 이승환;홍성호;고승희;최희연;황성수
    • 한국HCI학회논문지
    • /
    • 제11권3호
    • /
    • pp.5-12
    • /
    • 2016
  • 최근 TTS(Text-to-Speech)기능을 활용한 시각 장애인의 스마트폰 사용이 계속 증가하고 있다. TTS기능은 어플리케이션 내부의 문자 정보를 음성정보로 전환하며, 어플리케이션 내 정보를 순차적으로만 접근할 수 있다. 이러한 이유로 어플리케이션 내부의 버튼 및 콘텐츠의 배치가 효과적으로 이루어져야 한다. 그러나 기존에 제안된 모바일 어플리케이션, 특히 다양한 콘텐츠가 포함된 신문 어플리케이션의 경우 TTS 사용 환경을 고려하지 않았다. 따라서 시각 장애인들이 이용하기에 매우 어려운 상황이다. 또한 전맹인 이외에도 저시력 장애인을 고려한 인터페이스가 필요한 상황이다. 따라서 본 논문은 다양한 시각장애인의 접근성과 요구를 반영한 모바일 신문 어플리케이션 인터페이스를 제안한다. 제안하는 인터페이스는 TTS 사용 환경을 고려한 버튼 배치 및 검색 기능 및 이미 읽은 기사 분류 기능을 통해 빠르게 어플리케이션을 사용할 수 있게 하였다. 또한 잘못 발음되는 단어를 필터링하고 버튼에 대한 충분한 설명을 통해 어플리케이션을 원활하게 사용할 수 있게 하였다. 마지막으로 저시력 장애인을 위해 글자 크기 확대, 화면 반전 기능 등을 구현하였다. 실험 결과 제안하는 인터페이스가 일반 신문 어플리케이션 및 기존에 제안된 시각장애인용 인터페이스보다 기사 검색 속도 및 어플리케이션 사용성 측면에서 높은 성능을 나타내는 것을 확인하였다.

트위터 기반 이벤트 탐지에서의 기계학습을 통한 지명 노이즈제거 (Geographical Name Denoising by Machine Learning of Event Detection Based on Twitter)

  • 우승민;황병연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.447-454
    • /
    • 2015
  • 본 논문에서는 트위터 기반 이벤트 탐지에서의 기계학습을 통한 지명 노이즈제거 방식을 제안한다. 최근 스마트폰 이용자의 증가로 소셜 네트워크 서비스(SNS) 이용자가 증가하고 있는 추세이다. 그중 트위터는 140자 이내의 단문서비스와 팔로우 기능으로 정보의 빠른 전달력과 확산성을 가지고 있다. 이러한 특성과 모바일에 최적화된 트위터의 특성상 정보 전달 속도가 매우 빠르기 때문에 재난 상황이나 이벤트 전달의 매개체 역할을 하고 있다. 이와 관련된 연구로는 트위터 사용자 개개인을 이벤트 탐지의 센서로 사용하여 현실에서 발생하는 이벤트를 탐지하였는데 이벤트가 특정 장소에서 발생한다는 특성을 이용해서 지명 키워드를 사용하였다. 그러나 지명과 동형이의어 관계에 관한 노이즈제거에 대한 부분이 누락되어있어서 이벤트 탐지의 정확도를 낮추는 요인이 된다. 이에 본 논문에서는 제거와 예측 두 가지 방식으로 노이즈제거 기법을 적용하였다. 먼저 노이즈 관련 데이터베이스 구축을 이용하여 제거 필터링을 진행한 후에 나이브 베이지안 분류를 이용해서 지명 유무를 결정하였다. 실험 데이터를 이용해서 기계학습을 위한 확률값을 구했으며, 지명마다 본 논문에서 제시하는 예측기법을 검증했을 때 89.6%의 신뢰도로 노이즈제거 기법의 필요성을 보였다.

원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법 (Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion)

  • 최인오;김민;최재호;박정기;김경태
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.418-426
    • /
    • 2019
  • 최근 사물인터넷(internet of things: IoT) 스마트 홈 시스템과 관련하여 레이다 기반의 다양한 생체신호 탐지 기법들이 개발되고 있다. 생체신호는 폐에 의한 호흡수와 심장에 의한 심장박동수로 정의되며, 이는 일반적으로 흉부 또는 등의 미세한 움직임을 야기한다. 이때, 이 미세한 움직임은 레이다 수신신호의 위상을 변화시키기 때문에, 생체신호는 주로 위상 변화에 대한 스펙트럼 분석을 통해 탐지된다. 하지만, 호흡수와 달리 심장박동수에 의한 위상 변화는 매우 미약하기 때문에 실제 측정환경에서는 다양한 원인들로 인해 심장박동수가 오탐지될 확률이 매우 높다. 따라서 본 논문에서는 먼저 생체신호 오탐지를 야기하는 원인들을 분석한 후, 이를 바탕으로 효과적인 생체신호 탐지 기법을 제안한다. 제안된 기법은 크게 1) 위상 분리, 2) 위상 미분 및 필터링, 3) 생체신호 탐지, 그리고 4) 오탐지율 감소 단계로 구성되며, IR-UWB(Impulse-Radio Ultra-Wideband)를 사용한 실험 결과에서 보다 효율적이고 정확하게 생체신호가 탐지됨을 확인할 수 있었다.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.21-31
    • /
    • 2021
  • 최근 코로나(Covid-19)의 영향으로 스마트 헬스케어 관련 산업과 비대면 방식의 원격 진단을 통한 질환 분류 예측 연구의 필요성이 증가하고 있다. 일반적으로 호흡기 질환의 진단은 비용이 많이 들고 숙련된 의료 전문가를 필요로 하여 현실적으로 조기 진단 및 모니터링에 한계가 있다. 따라서, 간단하고 편리한 청진기로부터 수집된 호흡음을 딥러닝 기반 모델을 활용하여 높은 정확도로 분류하고 조기 진단이 필요하다. 본 연구에서는 청진을 통해 수집된 폐음 데이터를 이용하여 이상 호흡음 분류모델을 제안한다. 데이터 전처리로는 대역통과필터(BandPassFilter)방법론을 적용하고 로그 멜 스펙트로그램(Log-Mel Spectrogram)과 Mel Frequency Cepstral Coefficient(MFCC)을 이용하여 폐음의 특징적인 정보를 추출하였다. 추출된 폐음의 특징에 대해서 효과적으로 분류할 수 있는 병렬 합성곱 신경망 네트워크(Parallel CNN network)모델을 제안하고 다양한 머신러닝 분류기(Classifiers)와 결합한 스태킹 앙상블(Stacking Ensemble) 방법론을 이용하여 이상 호흡음을 높은 정확도로 분류하였다. 본 논문에서 제안한 방법은 96.9%의 정확도로 이상 호흡음을 분류하였으며, 기본모델의 결과 대비 정확도가 약 6.1% 향상되었다.

아두이노와 컬러센서를 이용한 색상 감지 기술 (Color Sensing Technology using Arduino and Color Sensor)

  • 송두섭;염호준;박상수
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.13-17
    • /
    • 2024
  • 컬러 센서는 인체를 포함한 물체의 사진을 촬영하여 모니터로 재현해 줄 대 사용하는 광학 센서이다. 컬러 센서는 물체에서 나오는 적색, 녹색, 청색의 빛을 각각 정량화하여 디지털 숫자로 표현하며, 그 값들을 비교하거나 혹은 그 비율을 비교하여 물체의 상태를 판단할 수 있다. 본 연구에서는 모니터에서 발현되는 표준 색상을 컬러 센서로 측정하여 서로간의 적색, 녹색, 청색 성분의 크기 즉 RGB 값들을 비교하였다. 컬러 센서 TCS 34725로 측정하였을 때 컴퓨터에서 발생시키는 빛이 적색, 녹색, 청색 빛 중 한 개 혹은 두 개의 빛 만으로 구성되어 있는 경우에도 컬러 센서는 세 가지 성분을 모두 검출하였다. 또한 같은 RGB 값을 가지는 두 가지 모니터의 색상도 컬러 센서로 측정하면 서로 다른 RGB 값이 측정되었다. 이 결과들은 모니터에 색상을 발현하는 데 이용되는 컬러 필터들의 불완전함과 컬러 센서에 사용되는 포토다이오드 들이 광 특성이 불완전하기 때문이라고 할 수 있다. 물체를 촬영하여 그 색상으로 그 물체의 상태를 판단할 때는 동일한 기종의 카메라 혹은 스마트 폰을 이용해야 할 것이다

E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석 (Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System)

  • ;이병현;최일영;정재호;김재경
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.311-328
    • /
    • 2022
  • 정보통신기술 발달로 스마트폰이 보급되면서, 온라인 쇼핑몰 서비스는 컴퓨터가 아닌 모바일로도 사용이 가능해졌다. 그로 인해 온라인 쇼핑몰 서비스를 이용하는 사용자는 급격히 증가하게 되고, 거래되는 제품의 종류 또한 방대해지고 있다. 따라서 기업은 이익을 최대화하기 위해서는 사용자가 관심을 가질만한 정보를 제공해주는 것이 중요하다. 이를 위해 사용자의 과거 행동 데이터나 행동 구매 기록을 기반으로 사용자에게 필요한 정보 또는 제품을 제시하는 것을 추천 시스템이라 한다. 현재 추천 서비스를 제공하는 대표적인 해외 기업으로는 Netflix, Amazon, YouTube 등이 있다. 최근 이러한 전자상거래 사이트에서는 사용자가 해당 제품에 대한 리뷰가 유용한지에 대해 투표할 수 있는 기능을 제공하고 있다. 이를 통해, 사용자는 유용하다고 판단되는 제품에 대한 리뷰와 평점을 참고하여 구매 의사결정을 내린다. 따라서 본 연구에서는 제품에 대한 평점과 리뷰의 유용성 정보 간의 상관관계를 파악하고, 리뷰의 유용성 정보를 추천 시스템에 반영하여 추천 성능을 확인하고자 한다. 또한 대부분의 사용자들은 만족한 제품에만 평점을 부여하는 경향이 있고 제품에 대한 평점이 높을수록 구매 의도가 높아지는 경향이 있다. 따라서 전통적인 협업 필터링 기법에 모든 평점을 반영한 결과와 4점과 5점 평점만을 반영한 추천 성능 결과를 비교하고자 한다. 이를 위해 본 연구에서는 Amazon에서 수집한 전자 제품 데이터를 사용하였으며, 실험 결과는 평점과 리뷰 유용성 정보 간 상관관계가 있는 것으로 확인되었다. 또한 모든 평점과 4점과 5점 평점만을 추천 시스템에 반영하여 추천 성능을 비교한 결과, 4점과 5점 평점만을 추천 시스템에 반영한 결과의 추천 성능이 더 높게 나타났다. 그리고 리뷰 유용성 정보를 추천 시스템에 반영한 결과는 리뷰가 유용할수록 추천 성능은 높게 나타나는 것으로 확인하였다. 따라서 이러한 실험 결과는 향후 개인화 추천 서비스의 성능 향상에 기여하고, 전자상거래 사이트에 시사점을 제공할 수 있을 것으로 본다.

Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구 (Comparative study of flood detection methodologies using Sentinel-1 satellite imagery)

  • 이성우;김완엽;이슬찬;정하규;박종수;최민하
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.181-193
    • /
    • 2024
  • 기후변화에 의해 발생하는 대기 불균형은 강우량의 증가로 이어지고, 침수 발생 빈도가 증가함에 따라 이를 탐지할 수 있는 기술의 필요성이 증가하고 있다. 침수 피해를 최소화하기 위해 지속적인 모니터링이 필요하며, 날씨의 영향을 받지 않는 합성개구레이더(Synthetic Aperture Radar, SAR) 영상을 활용하여 침수지역을 탐지하였다. 관측된 데이터는 median 필터를 통해 노이즈를 감소시키는 전처리 과정을 진행하였으며, 객체 탐지 기법을 통해 수체와 비수체를 분류하여 각 기법의 침수탐지 활용성을 평가하고자 하였다. 본 연구에서는 Otsu 기법과 SVM 기법을 통해 수체 및 침수 탐지를 수행하였으며, Confusion Matrix를 통해 전체적인 모델의 성능을 평가하였다. Otsu 기법은 수체와 비수체의 경계를 구분하는데 적합함을 보였으나, 혼합물의 영향을 받아 오탐지의 비율이 높게 나타났다. 반면, SVM 기법을 사용한 경우, 오탐지 비율이 낮고 혼합물에 의한 영향에 민감하지 않은 것으로 관측되었다. 이에 따라 침수 상태를 제외한 다른 조건에서 SVM 기법의 정확도가 높게 나타났다. Otsu 기법이 침수 조건에서 SVM 기법보다 다소 높은 정확도를 보였지만, 정확도의 차이가 5% 미만임을 확인할 수 있었다(Otsu: 0.93, SVM: 0.90). SVM 기법이 Otsu 기법보다 침수 전, 침수 후의 조건에서 정확도 차이가 최대 15% 이상 발생하여 수체 및 침수탐지에 더 적합하게 나타났다(Otsu: 0.77, SVM: 0.92). 이러한 결과는 SVM 기법이 수체 및 침수탐지에서 효과적으로 활용될 수 있음을 시사하며, 미래의 수재해 탐지 시스템에 적용될 때 유용한 정보를 제공할 수 있을 것으로 기대된다.

비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법 (The Method for Real-time Complex Event Detection of Unstructured Big data)

  • 이준희;백성하;이순조;배해영
    • Spatial Information Research
    • /
    • 제20권5호
    • /
    • pp.99-109
    • /
    • 2012
  • 최근 소셜 미디어의 발달과 스마트폰의 확산으로 SNS(Social Network Service)가 활성화가 되면서 데이터양이 폭발적으로 증가하였다. 이에 맞춰 빅데이터 개념이 새롭게 대두되었으며, 빅데이터를 활용하기 위한 많은 방안이 연구되고 있다. 여러 기업이 보유한 빅데이터의 가치창출을 극대화하기 위해 기존 데이터와의 융합이 필요하며, 물리적, 논리적 저장구조가 다른 이기종 데이터 소스를 통합하고 관리하기 위한 시스템이 필요하다. 빅데이터를 처리하기 위한 시스템인 맵리듀스는 분산처리를 활용하여 빠른게 데이터를 처리한다는 이점이 있으나 모든 키워드에 대해 시스템을 구축하여 저장 및 검색 등의 과정을 거치므로 실시간 처리에 어려움이 따른다. 또한, 이기종 데이터를 처리하는 구조가 없어 복합 이벤트를 처리하는데 추가 비용이 발생할 수 있다. 이를 해결하는 방안으로 기존에 연구된 복합 이벤트 처리 시스템을 활용하여 실시간 복합 이벤트 탐지를 위한 기법을 제안하고자 한다. 복합 이벤트 처리 시스템은 서로 다른 이기종 데이터 소스로부터 각각의 데이터들을 통합하고 이벤트들의 조합이 가능하며 스트림 데이터를 즉시 처리할 수 있어 실시간 처리에 유용하다. 그러나 SNS, 인터넷 기사 등 텍스트 기반의 비정형 데이터를 텍스트형으로 관리하고 있어 빅데이터에 대한 질의가 요청될 때마다 문자열 비교를 해야 하므로 성능저하가 발생할 여지가 있다. 따라서 복합 이벤트 처리 시스템에서 비정형 데이터를 관리하고 질의처리가 가능하도록 문자열의 논리적 스키마를 부여하고 데이터 통합 기능을 제안한다. 그리고 키워드 셋을 이용한 필터링 기능으로 문자열의 키워드를 정수형으로 변환함으로써 반복적인 비교 연산을 줄인다. 또한, 복합 이벤트 처리 시스템을 활용하면 인 메모리(In-memory)에서 실시간 스트림 데이터를 처리함으로써 디스크에 저장하고 불러들이는 시간을 줄여 성능 향상을 가져온다.

오피니언 분류의 감성사전 활용효과에 대한 연구 (A Study on the Effect of Using Sentiment Lexicon in Opinion Classification)

  • 김승우;김남규
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.133-148
    • /
    • 2014
  • 최근 다양한 정보채널들의 등장으로 인해 빅데이터에 대한 관심이 높아지고 있다. 이와 같은 현상의 가장 큰 원인은, 스마트기기의 사용이 활성화 됨에 따라 사용자가 생성하는 텍스트, 사진, 동영상과 같은 비정형 데이터의 양이 크게 증가하고 있는 것에서 찾을 수 있다. 특히 비정형 데이터 중에서도 텍스트 데이터의 경우, 사용자들의 의견 및 다양한 정보를 명확하게 표현하고 있다는 특징이 있다. 따라서 이러한 텍스트에 대한 분석을 통해 새로운 가치를 창출하고자 하는 시도가 활발히 이루어지고 있다. 텍스트 분석을 위해 필요한 기술은 대표적으로 텍스트 마이닝과 오피니언 마이닝이 있다. 텍스트 마이닝과 오피니언 마이닝은 모두 텍스트 데이터를 입력 데이터로 사용할 뿐 아니라 파싱, 필터링 등 자연어 처리기술을 사용한다는 측면에서 많은 공통점을 갖고 있다. 특히 문서의 분류 및 예측에 있어서 목적 변수가 긍정 또는 부정의 감성을 나타내는 경우에는, 전통적 텍스트 마이닝, 또는 감성사전 기반의 오피니언 마이닝의 두 가지 방법론에 의해 오피니언 분류를 수행할 수 있다. 따라서 텍스트 마이닝과 오피니언 마이닝의 특징을 구분하는 가장 명확한 기준은 입력 데이터의 형태, 분석의 목적, 분석의 결과물이 아닌 감성사전의 사용 여부라고 할 수 있다. 따라서 본 연구에서는 오피니언 분류라는 동일한 목적에 대해 텍스트 마이닝과 오피니언 마이닝을 각각 사용하여 예측 모델을 수립하는 과정을 비교하고, 결과로 도출된 모델의 예측 정확도를 비교하였다. 오피니언 분류 실험을 위해 영화 리뷰 2,000건에 대한 실험을 수행하였으며, 실험 결과 오피니언 마이닝을 통해 수립된 모델이 텍스트 마이닝 모델에 비해 전체 구간의 예측 정확도 평균이 높게 나타나고, 예측의 확실성이 강한 문서일수록 예측 정확성이 높게 나타나는 일관적인 성향을 나타내는 등 더욱 바람직한 특성을 보였다.