• Title/Summary/Keyword: 스마트 캠퍼스

Search Result 97, Processing Time 0.026 seconds

A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site (방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구)

  • Jeong-Hyun Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.

A Study on Classification of Mobile Application Reviews Using Deep Learning (딥러닝을 활용한 모바일 어플리케이션 리뷰 분류에 관한 연구)

  • Son, Jae Ik;Noh, Mi Jin;Rahman, Tazizur;Pyo, Gyujin;Han, Mumoungcho;Kim, Yang Sok
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.76-83
    • /
    • 2021
  • With the development and use of smart devices such as smartphones and tablets increases, the mobile application market based on mobile devices is growing rapidly. Mobile application users write reviews to share their experience in using the application, which can identify consumers' various needs and application developers can receive useful feedback on improving the application through reviews written by consumers. However, there is a need to come up with measures to minimize the amount of time and expense that consumers have to pay to manually analyze the large amount of reviews they leave. In this work, we propose to collect delivery application user reviews from Google PlayStore and then use machine learning and deep learning techniques to classify them into four categories like application feature advantages, disadvantages, feature improvement requests and bug report. In the case of the performance of the Hugging Face's pretrained BERT-based Transformer model, the f1 score values for the above four categories were 0.93, 0.51, 0.76, and 0.83, respectively, showing superior performance than LSTM and GRU.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

The Validity Analysis of SDN/NFV Military application (SDN/NFV의 군 적용 타당성 분석)

  • Jang, Ji-Hee;Kwon, Tae-Uk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.687-694
    • /
    • 2020
  • SDN and NFV are next-generation network technologies, and cloud, such as data centers, campuses, and large companies, has been established, or is actively applied by service-oriented communication companies. In particular, the Defense Integrated Data Center will be a prime example for military applications. In order for the Defense Integrated Data Center (DIDC) to become an intelligent center, it is accelerating the promotion of the "Smart Defense Integrated Data Center", which applied the latest information and communication technology (ICT). At the time of the establishment of DIDC, it plans to start building infrastructure such as cloud services at around 30% level, and expand D-Cloud to 75% through 'Cloud First'. In addition, the introduction of SDN/NFV will reduce the operation cost and manpower of DIDC, strengthen the ability to efficiently use information resources and cyber information protection systems, and increase flexibility and agility in using each system to improve efficiency in defense management in the future. Therefore, we will discuss the justification and expected effects of SDN/NFV introduction, focusing on DIDC.

A Graph Model of Heterogeneous IoT Data Representation : A Case Study from Smart Campus Management (이종 IoT 데이터 표현을 위한 그래프 모델: 스마트 캠퍼스 관리 사례 연구)

  • Nguyen, Van-Quyet;Nguyen, Huu-Duy;Nguyen, Giang-Truong;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.984-987
    • /
    • 2018
  • In an Internet of Thing (IoT) environment, entities with different attributes and capacities are going to be connected in a highly connected fashion. Specifically, not only the mechanical and electronic devices but also other entities such as people, locations and applications are connected to each other. Understanding and managing these connections play an important role for businesses, which identify opportunities for new IoT services. Traditional approach for storing and querying IoT data is used of a relational database management system (RDMS) such as MySQL or MSSQL. However, using RDMS is not flexible and sufficient for handling heterogeneous IoT data because these data have deeply complex relationships which require nested queries and complex joins on multiple tables. In this paper, we propose a graph model for constructing a graph database of heterogeneous IoT data. Graph databases are purposely-built to store highly connected data with nodes representing entities and edges representing the relationships between these entities. Our model fuses social graph, spatial graph, and things graph, and incorporates the relationships among them. We then present a case study which applies our model for representing data from a Smart Campus using Neo4J platform. Through the results of querying to answer real questions in Smart Campus management, we show the viability of our model.

A Study Education Model on the Software Defined Network Control System in the Transport Network (전송망의 소프트웨어 정의 네트워크 제어 시스템 교육 모델 연구)

  • Chang, Moon-soo;Kim, Yu-doo
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2018
  • During the major sections of the network, Software-defined network control technology for the network area corresponding to the transmission network is becoming a change in network-controlled environments utilizing network operation and provisioning across the network industry. Currently development is underway along with the deployment of PTN equipment and configuration for provisioning is being phased out. It is actively introducing establishment of SDN-based control system while constructing provisioning of PTN equipment from actual commercial network. Therefore, in this thesis, we are going to look at the contents and trends of SDN systems in packet-based transmission networks based on PTN and use them in research on OpenDaylight, an open source for configuring SDN. It then Network Operator will study the software defined control techniques for operational education.

Design of an Active Damper for Suppressing Vibrations of Inspection and Measurement Devices (검사 및 측정 장비 진동제어를 위한 능동댐퍼 설계)

  • Noh, Ho Chul;Ro, Seung Hoon;Ryu, Young Chan;Yi, Il Hwan;Jung, Geum Sub;Kim, Young Jo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Inspection and measurement of surface quality is one of the most critical processes for manufacturing products such as semiconductor wafers, sapphire substrates, and display panels. The vibrations of the inspection and measurement devices are supposed to be the most dominant factors for severe measurement errors and longer measuring time. In this study, dynamic characteristics of an inspection and measurement device are analyzed through frequency response experiment and computer simulation to obtain parameters such as frequencies, magnitudes, mode shapes, and periods of vibrations. And then an active damper which consists of sensor, interface board, and actuator is designed based on the parameters to formulate the most effective reaction signal to suppress the vibrations which is generated by an interface board, and provided by an actuator. If the vibrations are measured by the sensor, the active damper immediately generates and provides the corresponding reaction signal to inspection and measurement device. The result shows that the active damper can suppress structural vibrations effectively and reduce measuring time of the device and enhance the productivity.

A Study on CFD Result Analysis of Mist-CVD using Artificial Intelligence Method (인공지능기법을 이용한 초음파분무화학기상증착의 유동해석 결과분석에 관한 연구)

  • Joohwan Ha;Seokyoon Shin;Junyoung Kim;Changwoo Byun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.134-138
    • /
    • 2023
  • This study focuses on the analysis of the results of computational fluid dynamics simulations of mist-chemical vapor deposition for the growth of an epitaxial wafer in power semiconductor technology using artificial intelligence techniques. The conventional approach of predicting the uniformity of the deposited layer using computational fluid dynamics and design of experimental takes considerable time. To overcome this, artificial intelligence method, which is widely used for optimization, automation, and prediction in various fields, was utilized to analyze the computational fluid dynamics simulation results. The computational fluid dynamics simulation results were analyzed using a supervised deep neural network model for regression analysis. The predicted results were evaluated quantitatively using Euclidean distance calculations. And the Bayesian optimization was used to derive the optimal condition, which results obtained through deep neural network training showed a discrepancy of approximately 4% when compared to the results obtained through computational fluid dynamics analysis. resulted in an increase of 146.2% compared to the previous computational fluid dynamics simulation results. These results are expected to have practical applications in various fields.

  • PDF

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.

Numerical Comparative Study on the Thermal Runaway of NCM/LFP Batteries of the Same Geometry (동일 형태의 NCM/LFP 배터리의 열폭주 현상에 대한 수치해석적 비교 연구)

  • Myung-Bo Gang;Woo-Young Kim;Nam-Jin Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the thermal runaway of NCM and LFP batteries were compared and analyzed through numerical analysis under various conditions. Comparing the thermal runaway of the NCM622 (18650) battery cell and the LFP (18650) battery cell through oven test simulation, the LFP battery did not show thermal runaway, whereas the NCM622 battery temperature increased to 710℃ in 12 minutes. To observe the thermal runaway and propagation of the prismatic LFP battery cell, the internal temperature was set at 200℃ and the oven test simulation was conducted. It was found that thermal runaway occurred at 391℃ after 47 minutes. As a result of observing thermal runaway propagation by placing five NCM622 and LFP battery cells, the thermal runaway propagation was clearly observed in the case of the NCM622 battery, but in the case of the LFP battery, thermal runaway was not observed after the first cell. From the third battery cell, it was confirmed that the temperature change was very insignificant, and through this, it is considered that the LFP battery is relatively safe compared to the NCM battery in terms of the thermal runaway propagation of the battery.