• Title/Summary/Keyword: 스마트 머신

Search Result 220, Processing Time 0.029 seconds

Deep Learning-based system for plant disease detection and classification (딥러닝 기반 작물 질병 탐지 및 분류 시스템)

  • YuJin Ko;HyunJun Lee;HeeJa Jeong;Li Yu;NamHo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.9-17
    • /
    • 2023
  • Plant diseases and pests affect the growth of various plants, so it is very important to identify pests at an early stage. Although many machine learning (ML) models have already been used for the inspection and classification of plant pests, advances in deep learning (DL), a subset of machine learning, have led to many advances in this field of research. In this study, disease and pest inspection of abnormal crops and maturity classification were performed for normal crops using YOLOX detector and MobileNet classifier. Through this method, various plant pest features can be effectively extracted. For the experiment, image datasets of various resolutions related to strawberries, peppers, and tomatoes were prepared and used for plant pest classification. According to the experimental results, it was confirmed that the average test accuracy was 84% and the maturity classification accuracy was 83.91% in images with complex background conditions. This model was able to effectively detect 6 diseases of 3 plants and classify the maturity of each plant in natural conditions.

Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis (개인의 감성 분석 기반 향 추천 미러 설계)

  • Hyeonji Kim;Yoosoo Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • The paper proposes a smart mirror system that recommends fragrances based on user emotion analysis. This paper combines natural language processing techniques such as embedding techniques (CounterVectorizer and TF-IDF) and machine learning classification models (DecisionTree, SVM, RandomForest, SGD Classifier) to build a model and compares the results. After the comparison, the paper constructs a personal emotion-based fragrance recommendation mirror model based on the SVM and word embedding pipeline-based emotion classifier model with the highest performance. The proposed system implements a personalized fragrance recommendation mirror based on emotion analysis, providing web services using the Flask web framework. This paper uses the Google Speech Cloud API to recognize users' voices and use speech-to-text (STT) to convert voice-transcribed text data. The proposed system provides users with information about weather, humidity, location, quotes, time, and schedule management.

A Study on the Timing of Starting Pitcher Replacement Using Machine Learning (머신러닝을 활용한 선발 투수 교체시기에 관한 연구)

  • Noh, Seongjin;Noh, Mijin;Han, Mumoungcho;Um, Sunhyun;Kim, Yangsok
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • The purpose of this study is to implement a predictive model to support decision-making to replace a starting pitcher before a crisis situation in a baseball game. To this end, using the Major League Statcast data provided by Baseball Savant, we implement a predictive model that preemptively replaces starting pitchers before a crisis situation. To this end, first, the crisis situation that the starting pitcher faces in the game was derived through data exploration. Second, if the starting pitcher was replaced before the end of the inning, learning was carried out by composing a label with a replacement in the previous inning. As a result of comparing the trained models, the model based on the ensemble method showed the highest predictive performance with an F1-Score of 65%. The practical significance of this study is that the proposed model can contribute to increasing the team's winning probability by replacing the starting pitcher before a crisis situation, and the coach will be able to receive data-based strategic decision-making support during the game.

Development and Application of CCTV Priority Installation Index using Urban Spatial Big Data (도시공간빅데이터를 활용한 CCTV 우선설치지수 개발 및 시범적용)

  • Hye-Lim KIM;Tae-Heon MOON;Sun-Young HEO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.19-33
    • /
    • 2024
  • CCTV for crime prevention is expanding; however, due to the absence of guidelines for determining installation locations, CCTV is being installed in locations unrelated to areas with frequent crime occurrences. In this study, we developed a CCTV Priority Installation Index and applied it in a case study area. The index consists of crime vulnerability and surveillance vulnerability indexes, calculated using machine learning algorithms to predict crime incident counts per grid and the proportion of unmonitored area per grid. We tested the index in a pilot area and found that utilizing the Viewshed function in CCTV visibility analysis resolved the problem of overestimating surveillance area. Furthermore, applying the index to determine CCTV installation locations effectively improved surveillance coverage. Therefore, the CCTV Priority Installation Index can be utilized as an effective decision-making tool for establishing smart and safe cities.

A Study on User's Motion Visualization Using Motion Sensor and Its Data Discrimination (방향 센서를 이용한 사용자 모션 시각화와 그에 따른 데이터 판별에 관한 연구)

  • Lee, Sun-Min;Mun, Seo-Young;Cho, Timothy;Shin, Kang-sik;Won, Yoo-Jae
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.1028-1030
    • /
    • 2017
  • 최근 스마트 기기에 대한 관심이 지속적으로 증가함에 따라 다양한 스마트 기기가 출시되고 그에 대한 연구가 활발히 진행되고 있다. 기존 스마트 기기에 탑재된 모션 센서에 관한 연구 대부분은 사용자의 움직임을 이용한 게임 연구에 치우쳐 있다. 본 논문은 사용자 모션의 시각화라는 접근을 통해 사용자의 모션을 직관적으로 볼 수 있도록 하였다. 안드로이드 기반 모바일 기기에 탑재되어 있는 모션 센서 중 방향 센서를 이용하여 사용자 모션에 대한 데이터를 수집하고 이를 시각화 알고리즘을 통해 시각화 한다. 시각화한 결과를 손 글씨 숫자 이미지의 대형 데이터베이스 기반 머신러닝을 활용하여 분석하고 사용자의 모션을 인식할 수 있다는 결과를 확인했다.

A Study on the Evaluation of Concrete Unit-Water Content of FDR Sensor Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 FDR 센서의 콘크리트 단위수량 평가에 관한 연구)

  • Lee, Seung-Yeop;Youn, Ji-Won;Wi, Gwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.29-30
    • /
    • 2022
  • The unit-water content has a very significant effect on the durability of the construction structure and the quality of concrete. Although there are various methods for measuring the unit-water content, there are problems of time required for measurement, precision, and reproducibility. Recently, there is an FDR sensor capable of measuring moisture content in real time through an apparent dielectric constant change of electromagnetic waves. In addition, various artificial intelligence techniques that can non-linearly supplement the accuracy of FDR sensors are being studied. In this study, the accuracy of unit-water content measurement was compared and evaluated using machine learning and deep learning techniques after normalizing the data secured in concrete using frequency domain reflectometry (FDR) sensors used to measure soil moisture at home and abroad. The result of comparing the accuracy of machine learning and deep learning is judged to be excellent in the accuracy of deep learning, which can well express the nonlinear relationship between FDR sensor data and concrete unit-water content.

  • PDF

Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants (원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발)

  • Seong-Bin Mun;Sang-Hoon Lee;Young-Jin Oh;Sung-Ryul Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

Worker Detection Based on Ensemble Boosting Model Using a Low-cost Radar and IMU for Smart Safety System in Manufacturing (산업제조현장 스마트 안전 시스템용 레이다 및 IMU 센서를 이용한 앙상블 부스팅 모델 기반 작업자 탐지 기술)

  • Seungeon Song;Sangdong Kim;Bong-Seok Kim;Jeong Tak Ryu;Jonghun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.21-32
    • /
    • 2024
  • This paper proposes a smart safety system that combines low-cost CW(Continuous Wave) radar and IMU sensors to enhance blind spots that pose safety risks to workers in industrial manufacturing environments. The system employs a 24 GHz radar and a 6-axis IMU sensor to detect worker movements and utilizes a machine learning model to recognize worker situations in vibrating manufacturing sites. The ensemble boosting tree-based model achieved over 92.8% worker detection accuracy, demonstrating its effectiveness in improving safety in industrial settings.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.