• Title/Summary/Keyword: 스마트폰 물리 센서

Search Result 15, Processing Time 0.019 seconds

Design of U-Healthcare Monitoring System based on Mobile Device (모바일 디바이스 기반의 U-헬스케어 모니터링 시스템 구현)

  • Park, Joo-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • The WBAN technology means a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. It is necessary to develop the WBAN core technology that sensor node device, WBAN middleware and WBAN application service for WBAN environment. In this paper we designed the medical message structure and implemented medical application for purpose of vital information reliability. The message structure was proposed for WBAN environment and application can be check biometric information from BN on smart device through WBAN gateway.

Implementation of Real-time Sedentary Posture Correction Cushion Using Capacitive Pressure Sensor Based on Conductive Textile

  • Kim, HoonKi;Park, HyungSoo;Oh, JiWon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.153-161
    • /
    • 2022
  • Physical activities are decreasing and sitting time is increasing due to the automation, smartization, and intelligence of necessary household items throughout daily life. Recent healthcare studies have reported that the likelihood of obesity, diabetes, cardiovascular disease, and early death increases in proportion to sitting time. In this paper, we develop a sitting posture correction cushion in real time using capacitive pressure sensor based on conductive textile. It develops a pressure sensor using conductive textile, a key component of the posture correction cushion, and develops a low power-based pressure measurement circuit. It provides a function to transmit sensor values measured in real time to smartphones using BLE short-range wireless communication on the posture correction cushion, and develops a mobile application to check the condition of the sitting posture through these sensor values. In the mobile app, you can visualize your sitting posture and check it in real time, and if you keep it in the wrong posture for a certain period of time, you can notify it through an alarm. In addition, it is possible to visualize the sitting time and posture accuracy in a graph. Through the correction cushion in this paper, we experiment with how effective it is to correct the user's posture by recognizing the user's sitting posture, and present differentiation and excellence compared to other product.

Real-Time Physical Activity Recognition Using Tri-axis Accelerometer of Smart Phone (스마트 폰의 3축 가속도 센서를 이용한 실시간 물리적 동작 인식 기법)

  • Yang, Hye Kyung;Yong, H.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.506-513
    • /
    • 2014
  • In recent years, research on user's activity recognition using a smart phone has attracted a lot of attentions. A smart phone has various sensors, such as camera, GPS, accelerometer, audio, etc. In addition, smart phones are carried by many people throughout the day. Therefore, we can collect log data from smart phone sensors. The log data can be used to analyze user activities. This paper proposes an approach to inferring a user's physical activities based on the tri-axis accelerometer of smart phone. We propose recognition method for four activity which is physical activity; sitting, standing, walking, running. We have to convert accelerometer raw data so that we can extract features to categorize activities. This paper introduces a recognition method that is able to high detection accuracy for physical activity modes. Using the method, we developed an application system to recognize the user's physical activity mode in real-time. As a result, we obtained accuracy of over 80%.

Conceptual Group Activity Recognition Method in the Classroom Environment (강의실 환경에서의 집단 개념동작 인식 기법)

  • Choi, Jung-In;Yong, Hwan-Seung
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.5
    • /
    • pp.351-358
    • /
    • 2015
  • As smart phones with built-in sensors are developed, research on recognition using wearable devices is increasing. Existing papers are mostly limited on research to personal activity recognition. In this paper, we propose a method to recognize conceptual group activity. Before doing recognition, we generate new data based on the analysis of the conceptual group activity in a classroom. The study focuses on three activities in the classroom environment: Taking Lesson, Doing Presentation and Discussing. With the proposed algorithm, the recognition rate is over 96%. Using this method in real time will make it easy to automatically analyze the activity and the purpose of the classrooms. Moreover, it can increase the utilization of the classroom through the data analysis. Further research will focus on group activity recognition in other environments and the design of an group activity recognition system.

Medical Information Dynamic Access System in Smart Mobile Environments (스마트 모바일 환경에서 의료정보 동적접근 시스템)

  • Jeong, Chang Won;Kim, Woo Hong;Yoon, Kwon Ha;Joo, Su Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • Recently, the environment of a hospital information system is a trend to combine various SMART technologies. Accordingly, various smart devices, such as a smart phone, Tablet PC is utilized in the medical information system. Also, these environments consist of various applications executing on heterogeneous sensors, devices, systems and networks. In these hospital information system environment, applying a security service by traditional access control method cause a problems. Most of the existing security system uses the access control list structure. It is only permitted access defined by an access control matrix such as client name, service object method name. The major problem with the static approach cannot quickly adapt to changed situations. Hence, we needs to new security mechanisms which provides more flexible and can be easily adapted to various environments with very different security requirements. In addition, for addressing the changing of service medical treatment of the patient, the researching is needed. In this paper, we suggest a dynamic approach to medical information systems in smart mobile environments. We focus on how to access medical information systems according to dynamic access control methods based on the existence of the hospital's information system environments. The physical environments consist of a mobile x-ray imaging devices, dedicated mobile/general smart devices, PACS, EMR server and authorization server. The software environment was developed based on the .Net Framework for synchronization and monitoring services based on mobile X-ray imaging equipment Windows7 OS. And dedicated a smart device application, we implemented a dynamic access services through JSP and Java SDK is based on the Android OS. PACS and mobile X-ray image devices in hospital, medical information between the dedicated smart devices are based on the DICOM medical image standard information. In addition, EMR information is based on H7. In order to providing dynamic access control service, we classify the context of the patients according to conditions of bio-information such as oxygen saturation, heart rate, BP and body temperature etc. It shows event trace diagrams which divided into two parts like general situation, emergency situation. And, we designed the dynamic approach of the medical care information by authentication method. The authentication Information are contained ID/PWD, the roles, position and working hours, emergency certification codes for emergency patients. General situations of dynamic access control method may have access to medical information by the value of the authentication information. In the case of an emergency, was to have access to medical information by an emergency code, without the authentication information. And, we constructed the medical information integration database scheme that is consist medical information, patient, medical staff and medical image information according to medical information standards.y Finally, we show the usefulness of the dynamic access application service based on the smart devices for execution results of the proposed system according to patient contexts such as general and emergency situation. Especially, the proposed systems are providing effective medical information services with smart devices in emergency situation by dynamic access control methods. As results, we expect the proposed systems to be useful for u-hospital information systems and services.