• Title/Summary/Keyword: 스마트모니터링

Search Result 1,024, Processing Time 0.023 seconds

Study on Analysis of Queen Bee Sound Patterns (여왕벌 사운드 패턴 분석에 대한 연구)

  • Kim Joon Ho;Han Wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • Recently, many problems are occurring in the bee ecosystem due to rapid climate change. The decline in the bee population and changes in the flowering period are having a huge impact on the harvest of bee-keepers. Since it is impossible to continuously observe the beehives in the hive with the naked eye, most people rely on knowledge based on experience about the state of the hive.Therefore, interest is focused on smart beekeeping incorporating IoT technology. In particular, with regard to swarming, which is one of the most important parts of beekeeping, we know empirically that the swarming time can be determined by the sound of the queen bee, but there is no way to systematically analyze this with data.You may think that it can be done by simply recording the sound of the queen bee and analyzing it, but it does not solve various problems such as various noise issues around the hive and the inability to continuously record.In this study, we developed a system that records queen bee sounds in a real-time cloud system and analyzes sound patterns.After receiving real-time analog sound from the hive through multiple channels and converting it to digital, a sound pattern that was continuously output in the queen bee sound frequency band was discovered. By accessing the cloud system, you can monitor sounds around the hive, temperature/humidity inside the hive, weight, and internal movement data.The system developed in this study made it possible to analyze the sound patterns of the queen bee and learn about the situation inside the hive. Through this, it will be possible to predict the swarming period of bees or provide information to control the swarming period.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

A Study on DTS Data Modeling for MVDC Integrated Operation (MVDC 연계 운용을 위한 DTS 데이터 모델링에 관한 연구)

  • Chae-Young Lim;Yeong-Su Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.855-861
    • /
    • 2024
  • The power industry is undergoing a rapid transformation with the adoption of smart grid standards, advanced communication infrastructure, and new technologies for distributed power. MVDC (Medium Voltage Direct Current) technology plays a vital role in promoting efficient energy transmission and reducing greenhouse gas emissions, necessitating a structured architecture for stable management. This paper implements services defined in IEC 61850 and IEC 62541, defining a Virtual Manufacturing Device (VMD) to objectify the DTS (Digital Twin System). The VMD abstracts essential functions for control and monitoring, which are realized in DTS to enhance capabilities. The objectified DTS data facilitates server-client data exchange. Additionally, the proposed DTS-MS communication protocol defines transmitted data in JSON for remote access, providing node functionality for MVDC testing environments. The paper analyzes reference models for Digital Twin, proposes an Ethernet-based DTS architecture using international standards, and verifies the real-time performance improvements of the proposed system through mathematical simulations.

Structural Performance of Coated Steel Pipe Connections Subjected to Various Loading Conditions: An Analytical Study (다양한 하중 조건에 따른 코팅 강관 연결부의 구조성능 평가)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.233-241
    • /
    • 2024
  • In this study, finite element analyses of coated steel pipes were conducted to research the development of sensing-based monitoring smart pipes. The coated steel pipes underwent a chemical coating pretreatment process that used modified polyethylene on both the inside and outside surfaces. Furthermore, the steel pipes were designed to minimize damage during the expansion process by incorporating connecting parts. To evaluate structural performance under various loads, four loading conditions were established: static structural analysis by earth pressure, fatigue life evaluation by vehicle load, and resistance to water leakage under both tensile and compressive loads. The analysis estimated a higher fatigue life for the developed steel pipe, compared with that of a steel pipe using ready-made epoxy coatings and joints. In addition, an average maximum displacement reduction of 56.1% and a maximum stress reduction of 61.2% were confirmed under identical conditions and diameters, thereby verifying the safety of the connecting parts of the developed coated steel pipe. Furthermore, the results of stress distribution contour analyses revealed superior water leakage resistance at the fastening parts, compared with the centers of the pipes.

Evaluation of Plant Available Nutrient Levels Using EC Monitored by Sensor in Pepper and Broccoli Soil (고추와 브로콜리 토양의 센서 전기전도도 값과 유효태 양분 함량의 관계 평가)

  • Su Kyeong Sin;Jeong Yeon Kim;Jin Hee Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.328-335
    • /
    • 2023
  • For appropriate nutrient management and enhanced plant growth, soil sensors which reflect soil nutrient levels are required. Because there is no available sensor for nutrient monitoring, electrical conductivity (EC) sensor can be used to evaluate soil nutrient levels. Soil nutrient management using EC sensors would be possible by understanding the relationship between sensor EC values and soil temperature, moisture, and nutrient content. However, the relationship between soil sensor EC values and plant available nutrients was not investigated. Therefore, the objectives of the study were to evaluate effect of different amount of urea on soil EC monitored by sensors during pepper and broccoli cultivation and to predict the plant available nutrient contents in soil. During the cultivation period, soil was collected periodically for analyzing pH and EC, and the available nutrient contents. The sensor EC value increased as the moisture content increased, and low fertilizer treated soil showed the lowest EC value. Principal component analysis was performed to determine the relationship between sensor EC and available nutrients in soil. Sensor EC showed a strong positive correlation with nitrate nitrogen and available Ca. In addition, sum of available nutrients such as Ca, Mg, K, P, S and N was positively related to the sensor EC values. Therefore, EC sensors in open field can be used to predict plant available nutrient levels for proper management of the soil.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Study on the RFID's Application Environment and Application Measure for Security (RFID의 보안업무 적용환경과 적용방안에 관한 연구)

  • Chung, Tae-Hwang
    • Korean Security Journal
    • /
    • no.21
    • /
    • pp.155-175
    • /
    • 2009
  • RFID that provide automatic identification by reading a tag attached to material through radio frequency without direct touch has some specification, such as rapid identification, long distance identification and penetration, so it is being used for distribution, transportation and safety by using the frequency of 125KHz, 134KHz, 13.56MHz, 433.92MHz, 900MHz, and 2.45GHz. Also it is one of main part of Ubiquitous that means connecting to net-work any time and any place they want. RFID is expected to be new growth industry worldwide, so Korean government think it as prospective field and promote research project and exhibition business program to linked with industry effectively. RFID could be used for access control of person and vehicle according to section and for personal certify with password. RFID can provide more confident security than magnetic card, so it could be used to prevent forgery of register card, passport and the others. Active RFID could be used for protecting operation service using it's long distance date transmission by application with positioning system. And RFID's identification and tracking function can provide effective visitor management through visitor's register, personal identification, position check and can control visitor's movement in the secure area without their approval. Also RFID can make possible of the efficient management and prevention of loss of carrying equipments and others. RFID could be applied to copying machine to manager and control it's user, copying quantity and It could provide some function such as observation of copy content, access control of user. RFID tag adhered to small storage device prevent carrying out of item using the position tracking function and control carrying-in and carrying-out of material efficiently. magnetic card and smart card have been doing good job in identification and control of person, but RFID can do above functions. RFID is very useful device but we should consider the prevention of privacy during its application.

  • PDF

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service (인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로)

  • Kim, HaYeong;Heo, JeongYun;Kwon, Hochang
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.259-278
    • /
    • 2022
  • With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.