• Title/Summary/Keyword: 스마트게이트웨이

Search Result 153, Processing Time 0.016 seconds

Development of unified communication for marine VoIP service (해상 VoIP 서비스를 위한 통합 커뮤니케이션 기술 개발)

  • Kang, Nam-seon;Yim, Geun-wan;Lee, Seong-haeng;Kim, Sang-yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.744-753
    • /
    • 2015
  • This paper presents the results of research on developing marine unified communications to provide VoIP service based on marine satellites. With the recent popularity of smart-phones and other mobile devices, the demand for Internet-based wired and wireless unified technology has been growing in marine environments, and increasing interest is being directed to VoIP products and service models with high price competitiveness and the ability to deliver a variety of services. In this regard, this research designed three instruments, developed their unit modules, and verified their performances. These three instruments included the following: (1) a marine VoIP module equipped with an analogue gateway that can be linked to the existing devices used in vessels, which is more than 80% smaller than that of a land system; (2) a text/voice/video engine for marine satellite communications that runs on technology that minimizes communication data usage, which is a core technology for a marine VoIP service; and (3) a unified communication service that can support multilateral cloud-based message conversations, telephone number-based call functions, and voice/video calling between a private space in a ship and shore.

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.

Development of Software-Defined Perimeter-based Access Control System for Security of Cloud and IoT System (Cloud 및 IoT 시스템의 보안을 위한 소프트웨어 정의 경계기반의 접근제어시스템 개발)

  • Park, Seung-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Recently, as the introduction of cloud, mobile, and IoT has become active, there is a growing need for technology development that can supplement the limitations of traditional security solutions based on fixed perimeters such as firewalls and Network Access Control (NAC). In response to this, SDP (Software Defined Perimeter) has recently emerged as a new base technology. Unlike existing security technologies, SDP can sets security boundaries (install Gateway S/W) regardless of the location of the protected resources (servers, IoT gateways, etc.) and neutralize most of the network-based hacking attacks that are becoming increasingly sofiscated. In particular, SDP is regarded as a security technology suitable for the cloud and IoT fields. In this study, a new access control system was proposed by combining SDP and hash tree-based large-scale data high-speed signature technology. Through the process authentication function using large-scale data high-speed signature technology, it prevents the threat of unknown malware intruding into the endpoint in advance, and implements a kernel-level security technology that makes it impossible for user-level attacks during the backup and recovery of major data. As a result, endpoint security, which is a weak part of SDP, has been strengthened. The proposed system was developed as a prototype, and the performance test was completed through a test of an authorized testing agency (TTA V&V Test). The SDP-based access control solution is a technology with high potential that can be used in smart car security.