• Title/Summary/Keyword: 쉴드 터널

Search Result 231, Processing Time 0.018 seconds

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

A numerical study on the effect of train-induced vibration in shield tunnel (쉴드터널 내부에 작용하는 열차진동 영향에 관한 수치해석적 연구)

  • Kwak, C.W.;Park, I.J.;Park, J.B.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.261-267
    • /
    • 2014
  • Various types of external loads can be applied to the tunnel structure. In a shield tunnel, the vibration from the train may affect the behavior of the adjacent ground. In this study, the railway-induced vibration was estimated and applied to the shield tunnel through 3D numerical simulation. The effective stress analysis based on the finite difference method and Finn model was performed to investigate the potential of liquefaction below the tunnel. Furthermore, pore water pressure and displacement were monitored on a time domain; consequently, the liquefaction potential and dynamic response of the shield tunnel were analyzed. Consequently, it is confirmed that the generation of excess pore water pressure by train-induced vibrating load, however, the amount does not meaningfully affect the potential of liquefaction.

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground (쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압)

  • Kim, Kiseok;Oh, Ju-Young;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.433-452
    • /
    • 2018
  • The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.

Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM의 시공을 위한 기술적 고찰)

  • Jeong, Hoyoung;Zhang, Nan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • The use of TBM (tunnel boring machine) gradually increases in worldwide tunneling projects. TBM machine are often applied to more difficult and complex geological conditions in urban area, and many problems and difficulties have been reported due to these geological conditions. However, in Korea, there is a lack of research on difficult grounds so far. This paper discussed general aspects of investigation method, and problems of TBM tunneling in difficult grounds. Construction cases that passed through the difficult grounds in worldwide were analyzed and the typical difficult grounds were classified into 11 cases. For each case, the definition and general problems were summarized. Particularly, for mixed ground and boulder ground, and fault zone, which are frequent geological conditions in urban area with shallow depth, classification system, investigation methods and major considerations were discussed, and proposed the direction of future research. This paper is a basic study for the development of TBM construction technology in difficult ground, and it is expected that it will be useful for related research and construction of TBM in difficult ground in the future.