• Title/Summary/Keyword: 순환 굵은 골재

Search Result 127, Processing Time 0.026 seconds

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

Mechanical Properties of Recycled Aggregate Concrete Containing Fly Ash (순환골재를 이용한 플라이애시 콘크리트의 역학적 특성)

  • Yang, In-Hwan;Jeon, Byeong-Gwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • The mechanical properties such as compressive strength and elastic modulus of recycled aggregate concrete containing fly ash are investigated in this study. The experimental parameters were replacement ratio of recycled coarse aggregate(RCA) and fly ash. Replacement ratio of RCA was 0, 30, 50, and 70% and replacement ratio of fly ash was 0, 15, 30%. The experimental results were extensively discussed about compressive strength and elastic modulus of concrete at ages of 7, 28 and 91 days. Compared with concrete not containing fly ash, the decrease of compressive strength and elastic modulus of concrete containing fly ash with the replacement ratio of 30% was significant. Therefore, the test results represented that the fly ash replacement ratio of less than 30% was favorable in terms of mechanical properties of recycled coarse aggregate concrete.

Mechanical Properties and Predictions of Strength of Concrete Containing Recycled Coarse Aggregates (순환굵은골재를 포함하는 콘크리트의 역학적 특성 및 강도 예측)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • According to KS and Standard Specifications for Concrete, the compressive strength of concrete containing recycled aggregate is limited to 27 MPa and thereafter there are little research on concrete containing recycled aggregate of its compressive strength of greater than 27 MPa. Therefore, to expand the applicability of concrete recycled coarse aggregate(RCA), this paper concerns the mechanical properties of concrete containing RCA with compressive strength ranging from 30 to 60 MPa. The experimental parameters were water-cement ratio and replacement ratio of RCA. Water-cement ratio(w/c) was 0.36, 0.46 and 0.53, and replacement ratio of RCA was 30, 50, 70 and 100%. The experimental results were discussed about compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. Experimental elastic modulus for concrete with w/c=0.53 decreased by greater than 10% compared with that for concrete with w/c=0.36. The design code predictions for elastic modulus overestimated the experimental results. Whereas, the design code predictions for modulus of rupture underestimated the measured values.

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

Flexural Behavior of Reinforced Recycled Aggregate Concrete Beams (순환골재를 사용한 철근콘크리트 보의 휨거동 특성)

  • Song, Seon-Hwa;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2009
  • These days the amount of demolished concrete waste has been increasing due to reconstruction and redevelopment of aged buildings. So the use of recycled aggregates is recommended to solve environmental problems. Some investigations have been carried out to study the flexural behavior of reinforced concrete beams with recycled aggregates. But these have some limitation due to the use of low quality recycled aggregates and small-scale specimens in the laboratory. The purpose of this experimental study is to evaluate the flexural behavior of simply supported RC beams subjected to four-point monotonic loading and made with recycled aggregates. Seven full-scale RC beams were manufactured with different replacement level of recycled aggregates. The main parameters of the study are combination of aggregates. From the test results, the flexural behavior of the beam is described in terms of crack patterns and failure modes. And the flexural strength of RC beam with different types of recycled coarse aggregates and recycled fine aggregates is compared with the provision of KCI code.

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

Experimental Study on Flexural Behavior of Real Scale Reinforced Concrete Beams with Recycled Aggregates Replacement Ratios (순환골재 치환률에 따른 실물모형 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Yun, Hyun-Doo;You, Young-Chan;Bae, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.57-58
    • /
    • 2009
  • This paper reports experimental data on the structural performance of reinforced concrete beams with recycled aggregates. Reinforced concrete beams with recycled coarse aggregate and recycled sands were tested to evaluate their failure modes, flexural behavior and compared with a standard.

  • PDF

A Study on the Quality Improvement of Recycled Coarse Aggregate by High Speed Rotating Grinder (고속회전형 마쇄기술을 통한 순환골재 품질향상에 관한 연구)

  • Lee, Ki-Won;Yeo, Woon-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • In this study, we analyzed the problems of existing construction waste shredding technology to diagnose the problems of low quality recycled aggregates and to develop a new mortar peeling technique to produce high-quality recycled coarse aggregate for concrete. The purpose of this study is to verify the effectiveness of mortar peeling technique by doing simulation prior to on-site application and to check the quality properties of recycled coarse aggregate produced by applying a mortar peeling technique. We manufactured and installed High speed Rotating Grinder on-site and analyzed the correlation between mortar adhesion amount, dry density and water absorption rate of recycled coarse aggregate.

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.