높은 유틸리티 순차 패턴 탐사는 데이터 마이닝에서 중요한 연구 주제로 간주되고 있다. 이 주제에 대해 몇 개의 알고리즘들이 제안되었지만, 그것들은 높은 유틸리티 순차 패턴 탐사의 탐색 공간이 커지는 문제에 부딪히게 된다. 한 시퀀스의 더 엄격한 유틸리티 상한 값은 탐색 공간에서 초기에 유망하지 않은 패턴들을 더 가지치기할 수 있다. 본 논문에서 새로운 유틸리티 상한 값을 제안하는데, 그것은 한 시퀀스와 그 자손 시퀀스들의 최대 예상 유틸리티인 sequence expected utility (SEU)이다. 높은 유틸리티 순차 패턴들을 탐사하는데 필수적인 정보를 유지하기 위해 각 패턴에 대한 시퀀스 유틸리티 리스트를 새로운 자료구조로 사용한다. SEU를 활용하여 높은 유틸리티 순차 패턴들을 찾아내는 알고리즘인 High Sequence Utility List-Span (HSUL-Span)을 제안한다. 서로 다른 영역의 합성 데이터세트와 실제 데이터세트에 대한 실험 결과는 HSUL-Span이 상당히 적은 수의 후보 패턴들을 생성하고 실행 시간 면에서 다른 알고리즘들보다 우수한 것을 보여준다.
대용량 웹 데이터베이스로부터 필요한 관련 정보를 탐색하고, 다양한 형태의 정보로부터 지식을 창출하는 일은 매우 어려운 일이다. 본 논문은 복잡하고 다양한 형태의 패턴이 존재하고, 연속된 입력을 갖는 웹 데이터베이스에서 발생되는 빈발 패턴들을 효과적으로 저장할 수 있는 FP-Tree를 기반으로 하여 변화된 정보들을 능동적으로 유지하고 새로운 정보들에 U해 FP-Tree를 재구성하여 웹 페이지에 대한 유용한 패턴 정보와 사용자의 웹 사용 패턴 분석을 용이하게 한다. 그 결과 새로이 발견된 웹 사용 패턴들을 통해 웹 페이지의 구조적 정보와 구조적 연판 정보를 효과적으로 얻을 수 있다.
본 논문에서는 대용량 네트워크 트래픽 데이터를 대상으로 사이트의 프라이버시를 보호하면서 마이닝 결과의 정확성, 실용성 등을 보장할 수 있는 효율적인 순차 패턴 마이닝 기법을 제안한다. 네트워크가 발달함에 따라 네트워크 트래픽 데이터에 대한 마이닝은 네트워크를 통한 통신의 패턴을 찾아내고, 이를 사용하여 침입 탐지, 인터넷 웜의 탐지 등으로 유용하게 쓰이게 되었다. 그러나 네트워크 트래픽 데이터는 네트워크 사용자 개개인의 인터넷 접속 형태, IP 주소 등의 정보를 포함하는 데이터로 네트워크 사용자의 프라이버시를 해칠 수 있다는 문제점이 존재한다. 따라서 이들 네트워크 트래픽 데이터를 대상으로 하는 마이닝 기법에서는 프라이버시 보호를 위하여 각 사이트에 저장되어 있는 네트워크 트래픽 데이터를 공개하지 않으면서도, 의미있는 패턴을 찾을 수 있어야 한다. 본 논문에서는 프라이버시 보호를 위하여 N-저장소 서버 모델을 제안한다. 제안된 모델에서는 데이터를 분할하여 암호화한 후, 이를 복호화할 수 없는 서버에서 집계하는 방식을 사용하여 실제 데이터가 저장되어 있는 각 사이트의 출처 정보를 감추는 방식을 사용한다. 또한, 효율적인 빈번 패턴 생성을 위하여 빈번 항목에 대한 인덱스 구조를 제안하고, 이를 기반으로 한 순차 패턴 마이닝 기법을 보인다.
데이터 스트림에 대한 기존의 패턴 분석 알고리즘은 대부분 속도 향상과 효율적인 메모리 사용에 대하여 연구되어 왔다. 그러나 기존의 연구들은 새로운 패턴을 가진 데이터 스트림이 입력되었을 경우, 이 전에 분석된 패턴을 버리고 다시 패턴을 분석하여야 한다. 이러한 방법은 데이터의 실시간적인 패턴 분석을 필요로 하는 실제 환경에서는 많은 속도와 계산 비용이 소모된다. 본 논문에서는 끊임없이 입력되는 데이터 스트림의 패턴을 실시간으로 분석하는 방법을 제안한다. 이 것은 먼저 빠르게 패턴을 분석하고 그 다음부터는 이전에 분석된 패턴을 효율적으로 갱신하여 실시간적인 패턴을 얻어내는 방법이다. 데이터 스트림이 입력되면 시간 기반 윈도우로 나누어 여러 개의 순차들을 생성한다. 그리고 생성된 순차들의 정보는 해시 테이블에 입력되어 정해진 개수의 순차가 해시 테이블에 채워질 때마다 해시 테이블에서 패턴을 분석해 낸다. 이렇게 분석된 패턴은 패턴 트리를 형성하게 되고, 이 후에 새로 분석된 패턴들은 이 패턴 트리 안의 패턴 별로 갱신하여 현재 패턴을 유지하게 된다. 새로운 패턴 추가를 위해 패턴을 분석할 때 이전에 이미 발견된 패턴이 Suffix로 나올 수 있다. 그러면 패턴 트리에서 이 전 패턴으로의 포인터를 생성하여 중복되는 패턴 분석으로 인한 계산 시간의 낭비를 방지한다. 그리고 FIFO방법을 사용하여 오랫동안 입력이 안 된 패턴을 손쉽게 제거한다. 패턴이 조금씩 바뀌는 데이터 스트림 환경에서 RSP-DS가 기존의 알고리즘보다 우수하다는 것을 성능 평가를 통하여 증명하였다. 또한 패턴 분석을 수행할 데이터 순차의 개수와 자주 등장하는 데이터를 판별하는 기준을 조절하여 성능의 변화를 살펴보았다.
인터넷이 급속도로 성장함에 따라 웹사이트의 숫자도 늘어나고, 많은 정보들이 등록되었다. 웹사이트들은 사용자의 정보획득을 위해 다양한 하이퍼링크를 제공하고, 전문(full-text) 검색엔진을 도입하기도 하나, 웹사이트에 등록되는 정보의 양이 많아지면서 전문검색엔진의 유용성이 점점 줄어들고 있다. 따라서 본 논문에서는 사용자가 좀 더 친근하고 빠른 방법으로 웹사이트에 있는 정보를 습득할 수 있도록 하는 대화형 도우미에이전트를 제안한다. 즉, 사용자가 일상적으로 사용하는 자연어로 된 문장을 웹사이트 내의 도우미 에이전트와 주고받음으로써, 사용자가 원하는 정보를 얻을 수 있도록 한다. 도우미에이전트의 지식을 패턴-답변형태로 저장하고, 순차적 패턴매칭 기법을 이용하여 사용자가 원하는 대화를 이끌어낸다.
순차 패턴 탐사에 대한 연구는 대용량의 데이터베이스에서 사용자에 의해 주어지는 최소 지지도를 만족하는 빈발 시퀀스를 찾는 문제를 다룬다. 하지만 현재까지 이루어진 순차 패턴 탐사 방법은 빈발 시퀀스들의 길이가 길어지거나 최소 지지도가 상대적으로 낮게 주어진 상황에서는 생성되는 시퀀스가 기하급수적으로 많아져서 성능이 급격히 저하되는 문제점을 가지고 있다. 본 논문에서는 이 문제를 해결하기 위해서 모든 빈발 시퀀스의 정보를 포함하며 그 수가 현저히 적은 닫힌 빈발 시퀀스를 찾는 방법을 제안한다. 제안하는 알고리즘은 효율적으로 가지치기를 수행하기 위해서 깊이우선 탐색 방법으로 후보 시퀀스를 생성하고 데이터베이스를 비트맵으로 표현하여 비트 연산으로 지지도를 효율적으로 계산한다. 또한, 비트맵으로 표현된 시퀀스 특성을 이용하여 가지치기할 시퀀스를 적은 연산 비용으로 찾을 수 있다. 이런 장점을 통하여 제안한 방법이 지금까지 제안된 알고리즘보다 훨씬 빨리 닫힌 빈발 시퀀스를 찾는 것을 성능 실험을 통하여 확인하였다.
최근 음성인식에서는 잡음환경에서 좀 더 신뢰성 있는 결과를 얻기 위해 인식 결과 도출 단계에서 여러 가지 정보의 내용들을 융합하거나 이전 인식 결과의 후처리를 통하여 성능을 향상시키는 방법들이 연구되고 있다. 본 논문에서는 잡음 환경에서의 인식률 하락을 보완하기 위해 개인 모바일 기기를 위한 음성 명령어 인식에서 사용자의 사용패턴과 문맥 정보를 사용하는 방법을 제안한다. 기본 인식 결과를 보정하기 위해서 현재 명령어를 발화하기 이전에 사용자가 사용한 순차적 명령어 패턴을 사용하였다. 또한 문맥 정보를 위해서는 사용중인 기기의 현재 기능과 발화된 명령어간의 연관성을 사용하였다. 실험을 통해 제안한 방법이 기본 인식 시스템에서 발생한 오인식의 약 50%를 수정하였음을 보였으며 이로써 제안한 방법의 타당성을 검증하였다.
지능형 배관 검사체(PIG)는 가스나 기름 배관 안을 지나가며 검사체에 장착된 여러 센서로부터 신호(센서 데이타로 불림)들을 취합하는 장치이다. PIG로부터 취합된 센서데이타들을 분석함으로써, 배관의 구멍, 뒤틀림 또는 잠재적으로 가스 폭발의 위험을 가지고 있는 결함들을 발견할 수 있다. 배관의 센서 데이타를 분석가가 분석을 할 때에는 주로 두 가지 분석 패턴을 사용한다. 첫 번째는 센서 데이터를 순차적으로 분석하는 순차적 분석 패턴이고, 두 번째는 특정한 구간을 반복해서 분석하는 반복적 분석 패턴이다. 특히, 센서 데이타를 분석할 때 반복적 분석 패턴이 많이 사용된다. 기존의 PIG 소프트웨어들은 사용자의 요청이 있을 때 마다 서버로부터 센서 데이타들을 오므로, 매 요청마다 네트워크 전송비용과 디스크 액세스 비용이 든다. 이와 같은 방법은 순차적 분석 패턴에는 효율적이지만, 분석 패턴의 대부분을 차지하는 반복적 분석 패턴에는 비효율적이다. 이와 같은 문제는 서버/클라이언트 환경에서 다수의 분석가가 동시에 분석을 할 경우에는 매우 심각해진다. 이러한 문제점을 해결하기 위해 본 논문에서는 배관 센서 데이타들을 여러 개의 시계열 데이타로 생각하고, 효율적으로 시계열 데이타를 캐싱 하는 T-Cache라 부르는 주기억장치 고성능 캐시 관리자를 제안한다. 본 연구는 클라이언트 측에서 시계열 데이타를 캐싱하는 최초의 연구이다. 먼저, 고정된 거리의 시계열 데이타들의 집합을 캐싱 단위로 생각하는 신호 캐시 라인이라는 새로운 개념을 제안하였다. 다음으로, T-Cache에서 사용되는 스마트 커서와 여러 알고리즘을 포함하는 여러 가지 자료구조를 제안한다. 실험 결과, 반복적 분석 패턴의 경우 T-Cache를 사용하는 것이 디스크 I/O측면과 수행 시간 측면에서 월등한 성능 향상을 보였다. 순차적 분석 패턴의 경우에도 T-Cache를 사용하지 않은 경우와 거의 유사한 성능을 보였다. 즉, 캐시를 사용함으로써 발생하는 추가비용은 무시할 수 있음을 보였다.
본 논문에서는 패턴이나 음성데이터와 같이 순차적 데이터론 인식하는데 널리 사용되어온 모델로서, 일련의 순차적인 성질을 내포하고있는 데이터를 다루는 문제에 적합하다고 할 수 있는 HMM을 이용하여 정보추출 문제를 다룬다. 기본적으로는 통상적인 HMM 사용법을 따르나 모델의 구조를 정함에 있어서 HMM을 사용할 때는 주로 목적에 맞는 HMM의 구조를 수동으로 구성하고 모델 내부의 확률 파라미터 값을 학습시켰던 데 반해, 본 논문에서는 데이터의 전처리 정보를 이용하여 초기에 추상적으로 설정한 모델이 학습을 통해서 점차 구체화되어 가는 자기 구성 은닉마르코프 모델(5-HMM)을 제시하여 사용한다. 제시된 방법은 CFP(Call for Paper)등의 텍스트 데이터에 더만 실험에서 기존 방식을 사용한 HMM보다 향상된 결과를 보여준다.
데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.