• Title/Summary/Keyword: 순차적 사용 패턴

검색결과 128건 처리시간 0.028초

시퀀스 유틸리티 리스트를 사용하여 높은 유틸리티 순차 패턴 탐사 기법 (Mining High Utility Sequential Patterns Using Sequence Utility Lists)

  • 박종수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권2호
    • /
    • pp.51-62
    • /
    • 2018
  • 높은 유틸리티 순차 패턴 탐사는 데이터 마이닝에서 중요한 연구 주제로 간주되고 있다. 이 주제에 대해 몇 개의 알고리즘들이 제안되었지만, 그것들은 높은 유틸리티 순차 패턴 탐사의 탐색 공간이 커지는 문제에 부딪히게 된다. 한 시퀀스의 더 엄격한 유틸리티 상한 값은 탐색 공간에서 초기에 유망하지 않은 패턴들을 더 가지치기할 수 있다. 본 논문에서 새로운 유틸리티 상한 값을 제안하는데, 그것은 한 시퀀스와 그 자손 시퀀스들의 최대 예상 유틸리티인 sequence expected utility (SEU)이다. 높은 유틸리티 순차 패턴들을 탐사하는데 필수적인 정보를 유지하기 위해 각 패턴에 대한 시퀀스 유틸리티 리스트를 새로운 자료구조로 사용한다. SEU를 활용하여 높은 유틸리티 순차 패턴들을 찾아내는 알고리즘인 High Sequence Utility List-Span (HSUL-Span)을 제안한다. 서로 다른 영역의 합성 데이터세트와 실제 데이터세트에 대한 실험 결과는 HSUL-Span이 상당히 적은 수의 후보 패턴들을 생성하고 실행 시간 면에서 다른 알고리즘들보다 우수한 것을 보여준다.

FP-Tree를 기반으로 한 웹 사용 패턴에 대한 순차적 연관성 탐색 기법 . (A Sequential Association Rules Searching Methods for Web-Usage Patterns Based On Frequent-Pattern Tree)

  • 김영희;강우준;김응모
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.25-27
    • /
    • 2004
  • 대용량 웹 데이터베이스로부터 필요한 관련 정보를 탐색하고, 다양한 형태의 정보로부터 지식을 창출하는 일은 매우 어려운 일이다. 본 논문은 복잡하고 다양한 형태의 패턴이 존재하고, 연속된 입력을 갖는 웹 데이터베이스에서 발생되는 빈발 패턴들을 효과적으로 저장할 수 있는 FP-Tree를 기반으로 하여 변화된 정보들을 능동적으로 유지하고 새로운 정보들에 U해 FP-Tree를 재구성하여 웹 페이지에 대한 유용한 패턴 정보와 사용자의 웹 사용 패턴 분석을 용이하게 한다. 그 결과 새로이 발견된 웹 사용 패턴들을 통해 웹 페이지의 구조적 정보와 구조적 연판 정보를 효과적으로 얻을 수 있다.

  • PDF

사이트의 접속 정보 유출이 없는 네트워크 트래픽 데이터에 대한 순차 패턴 마이닝 (Privacy Preserving Data Mining of Sequential Patterns for Network Traffic Data)

  • 김승우;박상현;원정임
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.19-22
    • /
    • 2005
  • 본 논문에서는 대용량 네트워크 트래픽 데이터를 대상으로 사이트의 프라이버시를 보호하면서 마이닝 결과의 정확성, 실용성 등을 보장할 수 있는 효율적인 순차 패턴 마이닝 기법을 제안한다. 네트워크가 발달함에 따라 네트워크 트래픽 데이터에 대한 마이닝은 네트워크를 통한 통신의 패턴을 찾아내고, 이를 사용하여 침입 탐지, 인터넷 웜의 탐지 등으로 유용하게 쓰이게 되었다. 그러나 네트워크 트래픽 데이터는 네트워크 사용자 개개인의 인터넷 접속 형태, IP 주소 등의 정보를 포함하는 데이터로 네트워크 사용자의 프라이버시를 해칠 수 있다는 문제점이 존재한다. 따라서 이들 네트워크 트래픽 데이터를 대상으로 하는 마이닝 기법에서는 프라이버시 보호를 위하여 각 사이트에 저장되어 있는 네트워크 트래픽 데이터를 공개하지 않으면서도, 의미있는 패턴을 찾을 수 있어야 한다. 본 논문에서는 프라이버시 보호를 위하여 N-저장소 서버 모델을 제안한다. 제안된 모델에서는 데이터를 분할하여 암호화한 후, 이를 복호화할 수 없는 서버에서 집계하는 방식을 사용하여 실제 데이터가 저장되어 있는 각 사이트의 출처 정보를 감추는 방식을 사용한다. 또한, 효율적인 빈번 패턴 생성을 위하여 빈번 항목에 대한 인덱스 구조를 제안하고, 이를 기반으로 한 순차 패턴 마이닝 기법을 보인다.

  • PDF

RSP-DS: 데이터 스트림에서의 실시간 순차 패턴 분석 (RSP-DS: Real Time Sequential Patterns Analysis in Data Streams)

  • 신재진;김호석;김경배;배해영
    • 한국멀티미디어학회논문지
    • /
    • 제9권9호
    • /
    • pp.1118-1130
    • /
    • 2006
  • 데이터 스트림에 대한 기존의 패턴 분석 알고리즘은 대부분 속도 향상과 효율적인 메모리 사용에 대하여 연구되어 왔다. 그러나 기존의 연구들은 새로운 패턴을 가진 데이터 스트림이 입력되었을 경우, 이 전에 분석된 패턴을 버리고 다시 패턴을 분석하여야 한다. 이러한 방법은 데이터의 실시간적인 패턴 분석을 필요로 하는 실제 환경에서는 많은 속도와 계산 비용이 소모된다. 본 논문에서는 끊임없이 입력되는 데이터 스트림의 패턴을 실시간으로 분석하는 방법을 제안한다. 이 것은 먼저 빠르게 패턴을 분석하고 그 다음부터는 이전에 분석된 패턴을 효율적으로 갱신하여 실시간적인 패턴을 얻어내는 방법이다. 데이터 스트림이 입력되면 시간 기반 윈도우로 나누어 여러 개의 순차들을 생성한다. 그리고 생성된 순차들의 정보는 해시 테이블에 입력되어 정해진 개수의 순차가 해시 테이블에 채워질 때마다 해시 테이블에서 패턴을 분석해 낸다. 이렇게 분석된 패턴은 패턴 트리를 형성하게 되고, 이 후에 새로 분석된 패턴들은 이 패턴 트리 안의 패턴 별로 갱신하여 현재 패턴을 유지하게 된다. 새로운 패턴 추가를 위해 패턴을 분석할 때 이전에 이미 발견된 패턴이 Suffix로 나올 수 있다. 그러면 패턴 트리에서 이 전 패턴으로의 포인터를 생성하여 중복되는 패턴 분석으로 인한 계산 시간의 낭비를 방지한다. 그리고 FIFO방법을 사용하여 오랫동안 입력이 안 된 패턴을 손쉽게 제거한다. 패턴이 조금씩 바뀌는 데이터 스트림 환경에서 RSP-DS가 기존의 알고리즘보다 우수하다는 것을 성능 평가를 통하여 증명하였다. 또한 패턴 분석을 수행할 데이터 순차의 개수와 자주 등장하는 데이터를 판별하는 기준을 조절하여 성능의 변화를 살펴보았다.

  • PDF

순차적 패턴 매칭 기법을 이용한 대화형 도우미 에이전트 (Conversational Help Agent Using Sequential Pattern Matching Technique)

  • 김수영;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.24-26
    • /
    • 2000
  • 인터넷이 급속도로 성장함에 따라 웹사이트의 숫자도 늘어나고, 많은 정보들이 등록되었다. 웹사이트들은 사용자의 정보획득을 위해 다양한 하이퍼링크를 제공하고, 전문(full-text) 검색엔진을 도입하기도 하나, 웹사이트에 등록되는 정보의 양이 많아지면서 전문검색엔진의 유용성이 점점 줄어들고 있다. 따라서 본 논문에서는 사용자가 좀 더 친근하고 빠른 방법으로 웹사이트에 있는 정보를 습득할 수 있도록 하는 대화형 도우미에이전트를 제안한다. 즉, 사용자가 일상적으로 사용하는 자연어로 된 문장을 웹사이트 내의 도우미 에이전트와 주고받음으로써, 사용자가 원하는 정보를 얻을 수 있도록 한다. 도우미에이전트의 지식을 패턴-답변형태로 저장하고, 순차적 패턴매칭 기법을 이용하여 사용자가 원하는 대화를 이끌어낸다.

  • PDF

비트맵을 사용한 닫힌 빈발 시퀀스 마이닝 (Mining Frequent Closed Sequences using a Bitmap Representation)

  • 김형근;황환규
    • 정보처리학회논문지D
    • /
    • 제12D권6호
    • /
    • pp.807-816
    • /
    • 2005
  • 순차 패턴 탐사에 대한 연구는 대용량의 데이터베이스에서 사용자에 의해 주어지는 최소 지지도를 만족하는 빈발 시퀀스를 찾는 문제를 다룬다. 하지만 현재까지 이루어진 순차 패턴 탐사 방법은 빈발 시퀀스들의 길이가 길어지거나 최소 지지도가 상대적으로 낮게 주어진 상황에서는 생성되는 시퀀스가 기하급수적으로 많아져서 성능이 급격히 저하되는 문제점을 가지고 있다. 본 논문에서는 이 문제를 해결하기 위해서 모든 빈발 시퀀스의 정보를 포함하며 그 수가 현저히 적은 닫힌 빈발 시퀀스를 찾는 방법을 제안한다. 제안하는 알고리즘은 효율적으로 가지치기를 수행하기 위해서 깊이우선 탐색 방법으로 후보 시퀀스를 생성하고 데이터베이스를 비트맵으로 표현하여 비트 연산으로 지지도를 효율적으로 계산한다. 또한, 비트맵으로 표현된 시퀀스 특성을 이용하여 가지치기할 시퀀스를 적은 연산 비용으로 찾을 수 있다. 이런 장점을 통하여 제안한 방법이 지금까지 제안된 알고리즘보다 훨씬 빨리 닫힌 빈발 시퀀스를 찾는 것을 성능 실험을 통하여 확인하였다.

문맥 및 사용 패턴 정보를 이용한 음성인식의 성능 개선 (Performance Improvement of Speech Recognition Using Context and Usage Pattern Information)

  • 송원문;김명원
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.553-560
    • /
    • 2006
  • 최근 음성인식에서는 잡음환경에서 좀 더 신뢰성 있는 결과를 얻기 위해 인식 결과 도출 단계에서 여러 가지 정보의 내용들을 융합하거나 이전 인식 결과의 후처리를 통하여 성능을 향상시키는 방법들이 연구되고 있다. 본 논문에서는 잡음 환경에서의 인식률 하락을 보완하기 위해 개인 모바일 기기를 위한 음성 명령어 인식에서 사용자의 사용패턴과 문맥 정보를 사용하는 방법을 제안한다. 기본 인식 결과를 보정하기 위해서 현재 명령어를 발화하기 이전에 사용자가 사용한 순차적 명령어 패턴을 사용하였다. 또한 문맥 정보를 위해서는 사용중인 기기의 현재 기능과 발화된 명령어간의 연관성을 사용하였다. 실험을 통해 제안한 방법이 기본 인식 시스템에서 발생한 오인식의 약 50%를 수정하였음을 보였으며 이로써 제안한 방법의 타당성을 검증하였다.

T-Cache: 시계열 배관 데이타를 위한 고성능 캐시 관리자 (T-Cache: a Fast Cache Manager for Pipeline Time-Series Data)

  • 신제용;이진수;김원식;김선효;윤민아;한욱신;정순기;박세영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권5호
    • /
    • pp.293-299
    • /
    • 2007
  • 지능형 배관 검사체(PIG)는 가스나 기름 배관 안을 지나가며 검사체에 장착된 여러 센서로부터 신호(센서 데이타로 불림)들을 취합하는 장치이다. PIG로부터 취합된 센서데이타들을 분석함으로써, 배관의 구멍, 뒤틀림 또는 잠재적으로 가스 폭발의 위험을 가지고 있는 결함들을 발견할 수 있다. 배관의 센서 데이타를 분석가가 분석을 할 때에는 주로 두 가지 분석 패턴을 사용한다. 첫 번째는 센서 데이터를 순차적으로 분석하는 순차적 분석 패턴이고, 두 번째는 특정한 구간을 반복해서 분석하는 반복적 분석 패턴이다. 특히, 센서 데이타를 분석할 때 반복적 분석 패턴이 많이 사용된다. 기존의 PIG 소프트웨어들은 사용자의 요청이 있을 때 마다 서버로부터 센서 데이타들을 오므로, 매 요청마다 네트워크 전송비용과 디스크 액세스 비용이 든다. 이와 같은 방법은 순차적 분석 패턴에는 효율적이지만, 분석 패턴의 대부분을 차지하는 반복적 분석 패턴에는 비효율적이다. 이와 같은 문제는 서버/클라이언트 환경에서 다수의 분석가가 동시에 분석을 할 경우에는 매우 심각해진다. 이러한 문제점을 해결하기 위해 본 논문에서는 배관 센서 데이타들을 여러 개의 시계열 데이타로 생각하고, 효율적으로 시계열 데이타를 캐싱 하는 T-Cache라 부르는 주기억장치 고성능 캐시 관리자를 제안한다. 본 연구는 클라이언트 측에서 시계열 데이타를 캐싱하는 최초의 연구이다. 먼저, 고정된 거리의 시계열 데이타들의 집합을 캐싱 단위로 생각하는 신호 캐시 라인이라는 새로운 개념을 제안하였다. 다음으로, T-Cache에서 사용되는 스마트 커서와 여러 알고리즘을 포함하는 여러 가지 자료구조를 제안한다. 실험 결과, 반복적 분석 패턴의 경우 T-Cache를 사용하는 것이 디스크 I/O측면과 수행 시간 측면에서 월등한 성능 향상을 보였다. 순차적 분석 패턴의 경우에도 T-Cache를 사용하지 않은 경우와 거의 유사한 성능을 보였다. 즉, 캐시를 사용함으로써 발생하는 추가비용은 무시할 수 있음을 보였다.

5-HMM물 이용한 텍스트 정보추출 (Information extraction wish S-HMM from textual data)

  • 엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 패턴이나 음성데이터와 같이 순차적 데이터론 인식하는데 널리 사용되어온 모델로서, 일련의 순차적인 성질을 내포하고있는 데이터를 다루는 문제에 적합하다고 할 수 있는 HMM을 이용하여 정보추출 문제를 다룬다. 기본적으로는 통상적인 HMM 사용법을 따르나 모델의 구조를 정함에 있어서 HMM을 사용할 때는 주로 목적에 맞는 HMM의 구조를 수동으로 구성하고 모델 내부의 확률 파라미터 값을 학습시켰던 데 반해, 본 논문에서는 데이터의 전처리 정보를 이용하여 초기에 추상적으로 설정한 모델이 학습을 통해서 점차 구체화되어 가는 자기 구성 은닉마르코프 모델(5-HMM)을 제시하여 사용한다. 제시된 방법은 CFP(Call for Paper)등의 텍스트 데이터에 더만 실험에서 기존 방식을 사용한 HMM보다 향상된 결과를 보여준다.

  • PDF

시계열 데이터로부터의 경향성 기반 순차패턴 탐색 (Trend-based Sequential Pattern Discovery from Time-Series Data)

  • 오용생;이동하;남도원;이전영
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.27-45
    • /
    • 2001
  • 데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.

  • PDF