In this paper, a new local two-point approximation method which is based on the exponential intervening variable is proposed. This new algorithm, called the Two-Point Convex Approximation(TPCA), use the function and design sensitivity information from the current and previous design points of the sequential approximate optimization to generate a sequence of convex, separable subproblems. This paper describes the derivation of the parameters associated with the approximation and the numerical solution procedure. In order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve several typical design problems. These optimization results are compared with those of other optimizers. Numerical results obtained from the test examples demonstrate the effectiveness of the proposed method.
마이크로 유전알고리즘은 적은 수의 개체 사용 및 무작위 개체 구성을 통한 돌연변이 기능 대체의 특징을 갖는 진화연산을 수행하여 일반적인 유전알고리즘이 갖는 각 세대당 많은 계산 량이 요구되는 단점을 극복하고자 하였다. 이러한 마이크로 알고리즘은 특히 설계변수가 3~5 개를 갖는 문제에 효율적이라는 것이 많은 연구자들에 의하여 알려졌다. 따라서 본 연구의 목적은 순차적 실험계획법과 마이크로 유전알고리즘을 이용한 최적화 알고리즘을 개발하는 것이며, 이를 수학예제와 구조물 문제에 적용하여 실용성을 확인하고자 한다. 순차적 실험계획법은 저자들의 선행연구에서 제안되었으며, 실험계획법과 반응표면법을 이용하는 근사최적화 기법에 의한 시행착오적인 반복과정을 최소화하고자 하는 방법으로써, 행렬실험과 평균분석을 반복 적용하는 개념이다.
In this paper, a new method for constrained optimization of noisy functions is proposed. In approximate optimization using response surface methods, if constraints have severe noise, the approximate feasible region defined by approximate constraints is apt to include some of the infeasible region defined by actual constraints. This can cause the approximate optimum to converge into the infeasible region. In the proposed method, the approximate optimization is performed with the approximate constraints shifted by their deviations, which are calculated using a diagonal quadratic response surface method. This can prevent the approximate optimum from converging into the infeasible region. To fit the objective and constraints into diagonal quadratic models, we select the center and 4 additional points along each axis of design variables as experimental points. The deviation of each function is calculated using the differences between the real and approximate function values at the experimental points. A sequential approximate optimization technique based on the trust region algorithm is adopted to manage approximate models. The proposed approach is validated by solving some design problems. The results of the problems show the effectiveness of the proposed method.
For the line search of a multi-variable optimization, an efficient algorithm is presented. The algorithm sequentially employs several polynomial approximations such as 2-point quadratic interpolation, 3-point cubic interpolation/extrapolation and 4-point cubic interpolation/extrapolation. The order of polynomial function is automatically increased for improving the accuracy of approximation. The method of approximation (interpolation or extrapolation) is automatically switched by checking the slope information of the sample points. Also, for selecting the initial step length along the descent vector, a new approach is presented. The performance of the proposed method is examined by solving typical test problems such as mathematical problems, mechanical design problems and dynamic response problems.
For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.
The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).
디스플레이 산업에 이용되는 적층판(layered plates)의 결합공정 중 냉각공정에서 열팽창계수의 차이로 인해 잔류응력이 발생하고 심하면 적층판에 크랙(crack)이 발생한다. 본 연구에서는 적층판의 결합공정을 대상으로 현상을 분석하고 이 과정을 시뮬레이션하는 해석 프로그램을 개발하였다. 또한 이를 토대로 향후의 새로운 제품에 대해서도 크랙과 같은 문제점을 최소화 할 수 있는 신뢰성 있는 공정 셋업을 제시하기 위해 차원감소법(dimension reduction method)과 근사화 방법인 반응표면법(response surface method), 순차적 근사최적화 기법(Sequential Approximate Optimization, SAO)을 이용하여 신뢰성기반의 강건최적설계를 하였다.
Nowadays, it is performed actively to optimize by using an approximate model. This is called the approximate optimization. In addition, the sequential approximate optimization (SAO) is the repetitive method to find an optimum by considering the convergence of an approximate optimum. In some recent studies, it is proposed to increase the fidelity of approximate models by applying the sequential sampling. However, because the accuracy and efficiency of an approximate model is directly connected with the design area and the termination criteria are not clear, sequential sampling method has the disadvantages that could support an unreasonable approximate optimum. In this study, the SAO is executed by using trust region, Kriging model and Optimal Latin Hypercube design (OLHD). Trust region is used to guarantee the convergence and Kriging model and OLHD are suitable for computer experiment. finally, this SAO method is applied to various optimization problems of highly nonlinear mathematical functions. As a result, each approximate optimum is acquired and the accuracy and efficiency of this method is verified by comparing with the result by established method.
This paper presents a new two-point approximation method based on the exponential intervening variable. To avoid the lack of definition of the conventional exponential intervening variables due to zero- or negative-valued design variables the shifting level into each exponential intervening variable is introduced. Then a new quadratic approximation, whose Hessian matrix has only diagonal elements of different values, is proposed in terms of these intervening variables. These diagonal elements are computed in a closed form, which correct the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the original function at the previous point. Finally, the authors developed a sequential approximate optimizer, solved several typical design problems used in the literature and compared these optimization results with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.
Based on the exponential intervening variable, a new two-point approximation method is presented. This introduces the shifting level into each exponential intervening variable to avoid the lack of def inition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.