• Title/Summary/Keyword: 수확후

Search Result 2,019, Processing Time 0.033 seconds

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Current Regional Cultural Situation and Evaluation of Grain Characteristics of Korean Wheat II. Grain Characteristics Collected in Domestic Wheat Cultivar Grown in Korea (국산밀 품질 향상을 위한 지역별 재배 현황 및 원맥 특성 평가 II. 농가 수집 원맥 특성 평가)

  • Kim, Kyeong-Hoon;Kang, Chon-Sik;Seo, Yong-Won;Woo, Sun-Hee;Heo, Moo-Ryong;Choo, Byung-Kil;Lee, Choon-Kee;Park, Kwang-Geun;Park, Chul Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Agronomic characteristics and grain properties of Korean wheat of 175 farmers in nationwide for two years, 2010/2011 and 2011/2012, were evaluated to support basic data for improving grain quality of Korean wheat and enhancing Korean wheat consumption. Agronomic characteristics, including culm length, spike length, number of $spike/m^2$ and rate of off-type plant, and grain properties, including 1000 kernel weight, test weight, moisture, ash and protein content, were influenced by year and location. Number of $spike/m^2$, test weight, moisture, ash and protein content of wheat cultivated in 2011 were higher than those of 2012 and culm length, spike length, rate of off-type plant and 1000 kernel weight of 2012 were higher than those of 2011. Wheat cultivated in southern part of Korea showed higher culm length and 1000 kernel weight and lower test weight than those of northern part of Korea. Spike length, number of $spike/m^2$ and test weight were reduced by additional fertilization after mid of March, although there was no significant difference between date of additional fertilization and grain properties. Cultivated wheats in Jeollabuk-do showed lower ash content and higher protein content than those of other provinces and cultivated wheats in Jeollanam-do exhibited higher ash content than that of other provinces. As amount of fertilization increased, culm length, 1000 kernel weight and protein content increased and spike length and ash content were decreased, although date of additional fertilization did not effect on agronomic characteristics and grain properties. Amount of fertilization was positively correlated with 1000 kernel weight and protein content (r = 0.159, P < 0.05 and r = 0.212, P < 0.01, respectively) and was negatively correlated with ash content (r = -0.185, P < 0.05). Thousand kernel weight was negatively correlated with ash content (r = -0.226, P < 0.01) and positively correlated with protein content (r = 0.207, P < 0.01). Ash content increased as test weight and culm length decreased and 1000 kernel weight was influenced by culm and spike length (r = 0.397, P < 0.001 and r = -0.205, P < 0.01, respectively).

Impact of Elevating Temperature Based on Climate Change Scenarios on Growth and Fruit Quality of Red Pepper (Capsicum annuum L.) (기후변화 시나리오에 근거한 온도상승이 고추의 생육양상 및 과실특성에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Son, In Chang;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.248-253
    • /
    • 2015
  • This study was conducted to determine the impact of temperature elevated based on climate change scenario on growth and fruit quality of red pepper (Capsicum annuum L.) in walk-in plant growth chambers. The intraday temperatures of climate normal years (IT) were determined using intraday mean temperatures of climatic normal years (1971~2000) in the Andong Province during the growing season (May 1~July 30). Red pepper plants were cultivated under different temperatures (starting at IT rise by up to $6^{\circ}C$, $2^{\circ}C$ increment). Plant height, stem diameter, branch number, leaf number, fresh weight and dry weight increased under the temperatures higher than IT. The number of flower was the greatest under IT+$2^{\circ}C$ (mean temperature at $22.8^{\circ}C$). The total number and the weight of fruits were the highest under IT+$2^{\circ}C$. While the fruit weight, fruit length and fruit diameter decreased more than IT+$2^{\circ}C$ as the temperature increased gradually. These results concluded that in condition that the current diurnal temperature change cycle is maintained in Andong area, in accordance with climate change scenarios, when the temperature rise $2^{\circ}C$ higher than intraday temperature of Andong area the quantity of pepper fruits will increase while maintaining quality, but increases more than that degree yields are expected to decrease significantly. This result suggests that the fruit yield could increase under IT+$2^{\circ}C$ and fruit quality could maintain great, but the fruit yield could decrease under the temperatures higher than IT+$2^{\circ}C$.

Effects of Substrate EC and Water Content on the Incidence of Brown Fruit Stem and Blossom End Rot in Glasshouse Sweet Pepper (배지내 EC와 함수율이 착색단고추의 과병무름증과 배꼽썩음과 발생에 미치는 영향)

  • Yu Geun;Choi Dong-Geun;Bae Jong-Hyang;Guak Sung-Hee
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • The objective of this study was to determine the effects of substrate water content and electrical conductivity (EC) on the incidence of brown fruit stem and blossom end rot in glasshouse sweet pepper (Capsicum annuum cv. Special). Three levels of water content and EC had been treated since the first fruit reached 3cm in diameter: that is, 49 (low), 65 (medium), and 86% (high) for water content, and 2.4 (low), 4.2 (medium) and $6.3dS{\cdot}m^{-1}$(high) for EC. Shoot growth was reduced with decreasing water content, and it was lower in both high and low EC treatments than medium EC treatment. Fruit weight at harvest was greater in both medium and hish water content treatments than low water content treatment (158g vs 146g). High EC reduced fruit weight compared to or low EC treatments. The incidence of brown fruit stem increased with increasing water content and with decreasing EC. The highest incidence was shown in the high water content/low EC treatment (38%), which was considerably higher than 2.4% of the low water content/high EC treatment. Blossom end rot occurred in general in the low water content and/or high EC conditions. These results indicated that substrate water content and EC should be controlled differently according to the growth stage, to reduce the incidence of blossom end rot and brown fruit stem in glasshouse sweet pepper. First, to reduce blossom end rot incidence, water content should be maintained high (86%) and EC low ($2.4dS{\cdot}m^{-1}$) until Sweets after fruit set. Secondly, to reduce brown fruit stem incidence, water content should be maintained low (49%) and EC high ($6.3dS{\cdot}m^{-1}$), especially after completion of fruit growth.

Fertilizing Effects of Swine Compost Fermented with Sawdust on Mixed Pastures (혼파초지에 대한 톱밥발효돈분의 시용효과)

  • Shin, J. Soon;Cho, Young-Mu;Lee, Hyo-Ho;Yoon, Sea-Hung;Park, Geun-Je;Choi, Ki-Chun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • Experiment was carried out to find the fertilizing effects of 8 different application rates of swine compost fermented with sawdust(SCS) including Chemical fertilizer(CF) on forage yield and soil chemical characteristics of mixed pastures sown in Sep. 1993 at National Livestock Research Institute, RDA., in Suwon during low years. It was arranged in a randomized complete block design with three replicates. Dry matter yield were shown at similar among treatments except Control and $50\%$ SCS of standard amount plot. In botanical composition, the legume and weeds percentages of each treatment were increased as advancing year. The final year's legume percentage were high in line with SCS fertilizing plots($39\%{\sim}43\%$), SCS + CF plots($30\%{\sim}41\%$) and CF plot($32\%$). In productions of TDN, NE and crude protein yield, SCS or SCS($75\%$) + CF($25\%$) were nearly same comparing those of CF, respectively. Phosphate, potassium, magnesium contents and K/(Ca + Mg) except calcium contents of those SCS fertilizing plots in plant were generally high with comparing CF. Those contents were proportional according to the fertilizing amount These result indicate the possibility to substitute chemical fertilizer for SCS($75\%$, 25ton/ha) + CF, $25\%$) as manure-N 210 kg/ha, but might be considered accumulation phosphate in the soil.

Comparison of the Plant Characteristics and Nutritional Components between GM and Non-GM Chinese Cabbages Grown in the Central and Northern Parts of Korea (중·북부지역에서 재배된 GM 배추와 Non-GM 배추간의 식물체 특성 및 영양 성분 비교 분석)

  • Cho, Dong-Wook;Oh, Jin-Pyo;Park, Kuen-Woo;Lee, Dong-Jin;Chung, Kyu-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.836-844
    • /
    • 2010
  • This study was carried out to investigate plant characteristics and nutritional components of the genetically modified (GM) Chinese cabbage and its control line grown in the central and northern parts of Korea in order to establish the evaluating protocol and standard assessment. The GM and non-GM Chinese cabbage was planted with normal and concentrated density at two locations in spring and fall of 2008 and 2009. From the statistic analysis on plant characteristics and nutritional components, there were not many significant differences between GM and non-GM Chinese cabbage. Only few differences in the plant characteristics were found between the dense and normal planting. In the dense planting, there was no significant difference between GM and non-GM Chinese cabbages except for three out of 18 plant traits, such as leaf shape, hairiness and midrib length. On the other hand, nine plant traits including leaf length, leaf width, leaf color, leaf shape, fresh weigh of ground part, number of leaf, midrib length, midrib width and root diameter were slightly different between GM and non-GM Chinese cabbage in the normal planting. In case of leaf length, midrib length, midrib width and fresh weigh of ground part, there were significantly differences not only between two lines, but also between two locations. From nutritional component analysis, only five fatty acids were identified in the Chinese cabbage: palmitic acid, oleic acid, stearic acid, linoleic acid and linolenic acid. Except linoleic acid, four fatty acids in one gram of dried sample from GM line were little higher than those from non-GM line. However, there were no significant differences in total contents of fatty acids not only between GM and non-GM Chinese cabbage line, but also between northern and central cultivating areas in the normal and dense planting. According to the composition of inorganic elements identified in the samples from both lines, there were six macro-elements, such as N, P, Ca, K, Mg and Na, and four micro-elements, Cu, Fe, Mn and Zn. Based on the result from PCA analysis, specific clusters were not found between GM Chinese cabbage and the control line, but found between two regions.

Effect of Modified Atmosphere Packaging on Postharvest Quality of Kohlrabi (콜라비의 수확 후 MA 포장에 따른 품질 유지 효과)

  • Park, Me-Hea;Choi, Ji-Weon;Kim, Yong-Bum;Kim, Myeong-Hae;Won, Hee-Yeon;Shin, Sun-Young;Kim, Ji-Gang
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.655-665
    • /
    • 2014
  • The effect of modified atmosphere packaging (MAP) on kohlrabi (Brassica olerace L. gongulodes group)'s quality and antioxidant molecule during storage was examined to determine the optimal film package for maintaining freshness. To extend shelf life, MAP was tested using PE $50{\mu}m$ and oriented polypropylene (OPP) films with oxygen transmission rate (OTR) at 3,000, 10,000, $15,000mL/m^2/day/atm$. The OPP film packaging with modified oxygen transmission rate showed a delay in a weight loss and extended storage period. The package with OTR 3000 attained the desired gas composition of $O_2$ 3.2-6.7 kPa and $CO_2$ 13.1-19.8 kPa, in storage at room temperature. Kohlrabi stored in this package showed the lowest weight loss and the highest visual quality. Deterioration and off-odor were developed more rapidly in PE $50{\mu}m$ towards the end of the storage at room temperature. However, there are no differences among OTR films in visual quality and off-odor until 60 days at cold storage. Vitamin C content of kohlrabi was reduced rapidly in OTR 15000 with high transmission rate and showed less loss in PE $50{\mu}m$ and OTR 3000 in both room temperatures and cold storage. Results revealed that an OPP film with OTR 3000 extended the shelf life of kohlrabi in storage with maintained quality and vitamin C.

Effect of Root Zone Warming by Hot Water on Fruit Characteristics and Yield of Greenhouse- Grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 과실특성 및 수량에 미치는 영향)

  • 신용습;이우승;연일권;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on fruit yield of oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$ and non-warming from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The blooming of female flower was faster 1 days in 17$^{\circ}C$ plot, 6 days in 21$^{\circ}C$ plot, and 7 days in $25^{\circ}C$ plot than in control plot and the days from blooming to harvesting were shorter 5 days in 17$^{\circ}C$ plot, 11 days in 21$^{\circ}C$ plot, and 12 days in $25^{\circ}C$ plot than in control plot. 2. Mean fruit weight was the highest in 21$^{\circ}C$ plot, followed $25^{\circ}C$, 17$^{\circ}C$ and control plots, respectively, and flesh thickness was the highest in $25^{\circ}C$ plot, followed by 21, 17$^{\circ}C$ and control plots, respectively. 3. Early and middle-phase yield was the highest in $25^{\circ}C$ plot, followed by 21$^{\circ}C$, 17$^{\circ}C$ and control plots but late yield was the highest in 17$^{\circ}C$ plot, followed by control, 21, and $25^{\circ}C$ plots. Total yield per 10a was higher 33% in 17$^{\circ}C$ plot, 49% in 21$^{\circ}C$ plot, and 37a in $25^{\circ}C$ plots than in control plot, harvested 1, 490kg per 10a. 4. Total yield was highest in 21$^{\circ}C$ plot, followed by $25^{\circ}C$, 17$^{\circ}C$, and control plots. Malformed and fermented fruit rates were the highest in control, followed by 17, 25, and 21$^{\circ}C$ plots and marketable fruit rate was 21, 25, 17$^{\circ}C$, and control plot in order.

  • PDF

Physicochemical characteristics and antioxidant activity of Sumaeyaksuk depending on harvest times and processing methods (채취시기 및 가공방법에 따른 섬애약쑥의 이화학적 특성과 항산화활성)

  • Choi, Myoung Hyo;Kang, Jae Ran;Sim, Hye Jin;Kang, Min Jung;Seo, Weon Tack;Bae, Won Yoel;Shin, Jung Hye
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Sumaeyaksuk (Artemisia Argyi H.) is one of the original mugwort spices in Namhae-gun, Korea. This study was conducted to investigate the physicochemical characteristics and biological activities of water extracts from dried and aging Sumaeyaksuk samples during the May-July harvest season. One (SD) was dried under shade for 12 days, while the other (AD) was aged for 7 days at $60^{\circ}C$ and then roasted for 220 minutes at over $90^{\circ}C$. Glucose was solely detected as a free sugar, and its SD and AD content were $0.42{\pm}0.02{\sim}0.43{\pm}0.01g/100g$, and $0.41{\pm}0.02{\sim}0.47{\pm}0.04g/100g$, respectively. The total phenolic contents of SD were $1.85{\pm}0.09{\sim}3.45{\pm}0.14g/100g$, which were higher than those of AD ($1.29{\pm}0.08{\sim}2.90{\pm}0.08g/100g$). The antioxidant activities of the water extract powder from each Sumaeyaksuk were assessed by different in vitro methods, such as the DPPH and ABTS radical scavenging activity, FRAP, and decoloration prevention activity in ${\beta}$-carotene linoleic system. The DPPH and ABTS radical scavenging activity of AD extract were significantly higher than those of the SD extract (p<0.05). Moreover, at the concentrations of 31.25, 62.5, 125, 250, $500{\mu}g/mL$, the FRAP of the SD-May extract showed $1.67{\pm}0.58{\sim}489.90{\pm}7.59{\mu}M$, while the AD-July extract showed $9.70{\pm}1.07{\sim}590.40{\pm}7.45{\mu}M$. The ${\beta}$-carotene decoloration prevention activity of the SD-May and AD-July extracts were $25.53{\pm}2.85{\sim}81.43{\pm}2.56%$, $35.98{\pm}2.22{\sim}79.00{\pm}1.42%$, respectively. Based on these results, the extracts of SD-May and AD-July were promising as a functional food source due to their high antioxidant activites.

Estimation of storability for Korean apples (Malus domestica) using Md-ACS1 and Md-ACO1 DNA marker (Md-ACS1 및 Md-ACO1 분자표지를 이용한 국내육성사과의 저장성 예측)

  • Kwon, Young Soon;Kwon, Soon-Il;Kim, Seon Ae;Kweon, Hun-Joong;Yoo, Jingi;Ryu, Seulgi;Kang, In-Kyu;Kim, Jeong-Hee
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.891-897
    • /
    • 2017
  • Apple (Malus domestica) is a climacteric fruit because of its high respiration and ethylene production. Ethylene affects the fruit by decreasing its quality and storability. Md-ACS1 and Md-ACO1 genes are involved in ethylene biosynthesis in apple; the Md-ACS1-2 and Md-ACO1-1 alleles are associated with low ethylene production. We conducted an analysis to study Md-ACS1 and Md-ACO1, and to examine ethylene production and softening rate of fruit at room temperature ($20^{\circ}C$) storage in 'Fuji (FJ)', 'Golden Supreme (GS)', and 5 cultivars of Korean apples ('RubyS (RS)', 'Hongro (HR)', 'Arisoo (AS)', 'Summer King (SK)', 'Greenball (GB)'). The result showed that an increase in the number of the alleles (ACS1-2, ACO1-1) decreased the ethylene production and softening rate. The presence of ACS1-1/1, ACO1-1/2 was confirmed in GS and the highest ethylene production and softening rate was observed. Ethylene production and softening rate of SK and GB expressing ACS1-1/2, ACO1-1/2 were higher than that of HR and AS, expressing ACS1-2/2, ACO1-1/2, but lower than GS. FJ with ACS1-2/2, ACO1-1/1 showed the lowest ethylene production and softening rate among all cultivars except RS. The Md-ACS1 and Md-ACO1 DNA markers could potentially be used to estimate storability and applied in marker assisted selection the improve the efficiency of apple breeding.