• Title/Summary/Keyword: 수학적 의사소통 목표

Search Result 24, Processing Time 0.019 seconds

A Journey of the Measuring Length Unit: A Description of Mathematics Textbook Development (길이재기 단원의 여정: 수학 교과서 개발과정)

  • Lee, Kyung-Hwa;Kang, Wan
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.2
    • /
    • pp.157-177
    • /
    • 2008
  • This paper provides a description of the process in development of textbook unit on measuring length for second grade in elementary school according to action research methodology. The teaching unit development has been done based on the new national mathematics curriculum released in 2006. Mathematical communication and positive attitude toward mathematics are highly emphasized in the new curriculum. These new foci have been analysed through literature review and interviews with two incumbent teachers to be respected in the unit in an appropriate way. Three stages of development with different ways of organizing contents and different problem contexts were reported in the paper.

  • PDF

The structure of teacher discourse in the process of solving mathematic problems (수학 문제 해결 과정에서의 교사 담론 구조)

  • Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.273-286
    • /
    • 2022
  • The purpose of this study is to analyze the teacher's discourse structure in the process of solving mathematics problems based on the communication between teachers and students. To achieve this goal, we observed a semester class by a teacher with experience who practiced a teaching method that creates mathematical meanings based on students' participation in class. In order to solve problems based on the participation of students in each class, the similarities between the processes of creating the structure of the discourse were analyzed. As a result of the analysis, the teacher was able to focus on the goal in the process of starting a discourse, and in the process of developing the discourse, the problem was solved by focusing on understanding the problem. In the process of arranging the discourse, the problem-solving process and the core of the result is summarized. Based on the possibility of generalization of the teacher discourse structure, it will be able to provide practical help in the process of implementing a teaching method that solves mathematics problems by communicating with students in the future.

A Semiotic Analysis on Mathematization in Mathematical Modeling Process (수학적 모델링 과정에서 수학화의 기호학적 분석)

  • Park, Jin Hyeong;Lee, Kyeong Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.95-116
    • /
    • 2013
  • Though the term "mathematical modeling" has no single definition or perspective, it is pursued commonly by groups from various perspectives who emphasize the activities of understanding and representing real phenomenon mathematically, building models to solve problems, and reinterpreting real phenomenon to make an attempt to understand the real world and related mathematical models more deeply. The purpose of this study is to identify how mathematization arises and find difficulties of mathematization in mathematical modeling process that share common features with the mathematical modeling activities as presented here. As a result of this research, we confirmed that the students mathematized real phenomena by building various representations, and interpreting them with regard to relationships and contexts inherent real phenomena. The students' communication fostered interplay between iconic representations and indexical representations. We also identified difficulties of mathematization in mathematical modeling process.

  • PDF

Investigating on the Building of 'Mathematical Process' in Mathematics Curriculum (수학과 교육과정에서 '수학적 과정'의 신설에 대한 소고)

  • Park, Hye-Suk;Na, Gwi-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.503-523
    • /
    • 2010
  • The current mathematics curriculum are consist of the following domains: 'Characteristics', 'Objectives', 'Contents', 'Teaching and learning method', and 'Assessment'. The mathematics standards which students have to learn in the school are presented in the domain of 'Contents'. 'Contents' are consist of the following sub-domains: 'Number and Operation', 'Geometric Figures', 'Measures', 'Probability and Statistics', and 'Pattern and Problem-Solving' (Elementary School); 'Number and Operation', 'Geometry', 'Letter and Formula', 'Function', and 'Probability and Statistics' (Junior and Senior High School). These sub-domains of 'Contents' are dealing with mathematical subjects, except 'Problem-Solving' at the elementary school level. In this study, the sub-domain of 'mathematical process' was suggested in an equal position to the typical sub-domains of 'Contents'.

A Case Study on Teaching the Sum of the Interior Angles of a Triangle Using Measurement Errors (측정 오차를 활용한 삼각형의 내각의 합 지도 방안 사례 연구)

  • Oh, Youngyoul;Park, Jukyung
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • In this study, under the assumption that the goal pursued in measurement area can be reached through the composition of the measurement activity considering the mathematical process, the method of summing the interior angles of a triangle using the measurement error was applied to the 4th grade class of the elementary school. Results of the study, first, students were able to recognize the possibility of measurement error by learning the sum of the interior angles of a triangle using the measurement error. Second, the discussion process based on the measurement error became the basis for students to attempt mathematical justification. Third, the manipulation activity using the semicircle was recognized as a natural and intuitive way of mathematical justification by the students and led to generalization. Fourth, the method of guiding the sum of the interior angles of a triangle using the measurement error contributed to the development of students' mathematical communication skills and positive attitudes toward mathematics.

South Korean Elementary Teachers' Perception about Students' Mathematics Listening Ability (수학 청해력 유형에 관한 초등학교 교사의 인식 조사 연구)

  • Kim, Rina
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2022
  • In mathematics classes, the verbal explanation may contain diverse mathematical concepts and principles in short sentences. It may also include mathematics symbols and terms that might not be used in everyday life. Therefore, students may need particular listening ability in order to understand and participate in mathematics communication. Unlike general listening, the listening ability for mathematics classes may require student to integrate their mathematical and linguistic knowledge. The aim of this study is to reveal the subdomains of listening ability for mathematics classes in a elementary school. I categorized listening ability for mathematics classes in a elementary school from the literature. The categories of listening ability for mathematics are Interpretive Listening, Evaluative Listening, Hermeneutic Listening, Selective Listening, Pretend Listening, and Ignored Listening. In order to develop a framework for understanding listening ability for mathematics classes, I investigated a hierarchy of 412 South Korean elementary teachers' perception. Through a web-based survey, the teachers were asked to rank order their beliefs about and students' listening ability. Findings show that teachers' perceptions about listening ability for mathematics classes are divergent from current research trends. South Korean elementary teachers perceived Interpretive Listening as the most important listening.

A Study of Secondary Mathematics Materials at a Gifted Education Center in Science Attached to a University Using Network Text Analysis (네트워크 텍스트 분석을 활용한 대학부설 과학영재교육원의 중등수학 강의교재 분석)

  • Kim, Sungyeun;Lee, Seonyoung;Shin, Jongho;Choi, Won
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.465-489
    • /
    • 2015
  • The purpose of this study is to suggest implications for the development and revision of future teaching materials for mathematically gifted students by using network text analysis of secondary mathematics materials. Subjects of the analysis were learning goals of 110 teaching materials in a gifted education center in science attached to a university from 2002 to 2014. In analysing the frequency of the texts that appeared in the learning goals, key words were selected. A co-occurrence matrix of the key words was established, and a basic information of network, centrality, centralization, component, and k-core were deducted. For the analysis, KrKwic, KrTitle, and NetMiner4.0 programs were used, respectively. The results of this study were as follows. First, there was a pivot of the network formed with core hubs including 'diversity', 'understanding' 'concept' 'method', 'application', 'connection' 'problem solving', 'basic', 'real life', and 'thinking ability' in the whole network from 2002 to 2014. In addition, knowledge aspects were well reflected in teaching materials based on the centralization analysis. Second, network text analysis based on the three periods of the Mater Plan for the promotion of gifted education was conducted. As a result, a network was built up with 'understanding', and there were strong ties among 'question', 'answer', and 'problem solving' regardless of the periods. On the contrary, the centrality analysis showed that 'communication', 'discovery', and 'proof' only appeared in the first, second, and third period of Master Plan, respectively. Therefore, the results of this study suggest that affective aspects and activities with high cognitive process should be accompanied, and learning goals' mannerism and ahistoricism be prevented in developing and revising teaching materials.

Skemp's concept development of underachievers' analytic geometry using the exploratory software, GSP & Excel (탐구형 소프트웨어를 활용한 해석기하에서 학습부진학생들의 개념형성에 관한 연구: 관계적.도구적 이해를 중심으로)

  • Yoon, In Jun;ChoiKoh, Sang Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.4
    • /
    • pp.643-671
    • /
    • 2012
  • The purpose of this study was to examine How the exploratory activities using Excel and GSP which are exploratory software, in learning analytic geometry affected on the underachievers' analytic geometry concept development process. The subjects of 5 students who received the 8th~9th grades from their examination of the last semester, participated in a total of 7 units based on Skemp's intelligent learning model. The results of the study showed that there were two important cases found to nearly achieve the category $R_2$. One was reflective thinking could happen through exploratory software in category $R_1$. The other was the exploratory activities which could have the same effectiveness as the relational understanding in category $I_2$, as Skemp mentioned that there is a room to be achieved in the elementary level when such relational understanding is achieved.

  • PDF

van Hiele 모델에 의한 기하학적 사고력 개발에 관한 연구(0 수준과 1 수준의 조작활동 중심으로)

  • 최창우
    • Education of Primary School Mathematics
    • /
    • v.1 no.1
    • /
    • pp.59-71
    • /
    • 1997
  • 기하학적 사고력 개발이라는 우리의 목표는 궁극적으로 보다 낮은 수준의 학생들에게 보다 높은 수준으로 나아가게 하는 경험을 주는 것이다. 학생들이 보다 높은 수준에서 추론할 수 있도록 하기 위하여 그들이 보다 낮은 수준에서 충분하고 효율적인 학습 경험을 가져야 한다는 것이다. 예를 들면 분수에서 이루어지는 것처럼 기계적인 암기식으로 사물을 학습함으로써 수준(단계)을 뛰어 넘으려고 노력하면은 그들이 학습한 것에 관한 많은 것을 기억할 수 없을 것이다. 조작에 관한 보다 풍부한 경험과 시각적으로 입체감을 주는 설명을 들은 어린이들이 보다 훌륭한 공간 추론을 할 수 있을 것이라 믿는다. 본 고에서는 기하학적인 사고의 개발에 관한 van Hiele 모델이 초등학교에서 기하 수업의 토론을 위한 기초로서 사용되어졌다. 그 모델의 수준들이 묘사되었고 일반적으로 초등학교 아동들의 사고는 0수준과 1수준이라 는 것이 밝혀졌다. 단지 극소수의 아동들이 2수준의 사고에 도달해 있을 것이다. 그러나 만약 초등학교에서의 수업이 기하학적인 개념을 구성하는데 주안점을 둔다면 보다 많은 어린이들이 2 수준의 사고를 보여줄 수 있을 것으로 생각된다. 0 수준의 어린이들은 도형의 형태에 초점이 맞추어져있고 1 수준의 어린이들은 도형의 성질을 이해하는데 에 있다. 2 수준의 사고자는 도형의 포함관계를 이해하고 비공식적으로 추론 할 수 있다. 처음 세 수준에서의 활동들에 대한 지침이 주어져 있으며 0 수준과 1수준에 연관되는 다수의 활동들을 묘사했다. 0수준의 어린이들을 위해 묘사된 활동들은 그들이 2차원 및 3차원의 도형 둘 다를 시각화하는데 도움을 주는 것이다. 1 수준에서 사고하는 학습자들을 위해 묘사된 활동들은 2차원 및 3차원 도형의 성질들을 강조했다. 아울러 본 고에서 언급한 활동들은 상호교수에의 접근을 반영했다. 그러한 접근방식은 학습자들로 하여금 그들의 활동과 의견으로부터 개념을 구성하게 해주며 그들의 활동 결과에 대해 다른 사람들과 의사소통 함으로서 개념을 명확하게 다듬어지게 해줄 수 있을 것이다. 아울러 평가 활동들이 본고의 마지막 부분에 주어져있다. 그러한 활동들은 교사들에게 어린이들의 기하학적인 사고수준을 결정하게 해주며 학습자들로 하여금 수업시간 이외에 보다 높은 사고수준으로 나아가게 해줄 수 있을 것으로 기대된다.

  • PDF

A Survey of Elementary School Teachers' Conception of the Aims of Teaching Mathematics (초등학교 교사들의 수학교육 목적 인식 실태 조사)

  • Pang, Jeong-Suk;Jung, Yoo-Kyung;Kim, Sang-Hwa
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.277-291
    • /
    • 2011
  • It is necessary for the teacher to understand why teach mathematics in order to implement the visions and expectations of the national mathematics curriculum in her actual classroom. This study conducted a survey of examining how elementary school teachers might understand the purpose of teaching mathematics. The results of this study showed that teachers' conceptions of the purpose of teaching mathematics were related mainly to the development of logical thinking, practical use of mathematics in everyday life, and a tool for studying other subjects or disciplines. However, teachers did not perceive much other purposes of mathematics education such as understanding the world, appreciating aesthetic value of mathematics, and developing communicative ability as well as sociality. Whereas teachers did not think of the significance of mathematics as an intellectual field when asked to write down how they would explain students why they had to learn mathematics, they tended to strongly agree it in the Likert-scale responses. Teachers' conceptions were not different according to their gender but teachers with less than five years' teaching experience were relatively negative than others with more experience. Given these results, this study provided issues and implications of teachers' conceptions of the purpose of teaching mathematics.