• Title/Summary/Keyword: 수학적 열 모델링

Search Result 41, Processing Time 0.023 seconds

Simulation of the High Frequency Hyperthermia for Tumor Treatment (종양치료용 고주파 열치료 인체적용 시뮬레이션)

  • Lee, Kang-Yeon;Jung, Byung-Geun;Kim, Ji-won;Park, Jeong-Suk;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.257-263
    • /
    • 2018
  • Hyperthermia supplies RF high-frequency energy above 1MHz to the tumor tissue through the electrodes. And the temperature of the tumor tissue is increased to $42^{\circ}C$ or more to cause thermal necrosis. A mathematical model can be derived a human body model for absorption and transmission of electromagnetic energy in the human model and It is possible to evaluate the distribution of temperature fields in biological tissues. In this paper, we build the human model based on the adult standard model of the geometric shape of the 3D model and use the FVM code. It is assumed that Joule heat is supplied to the anatomical model to simulate the magnetic field induced by the external electrode and the temperature distribution was analyzed for 0-1,200 seconds. As a result of the simulation, it was confirmed that the transferred energy progressively penetrates from the edge of the electrode to the pulmonary tumors and from the skin surface to the subcutaneous layer.

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

An Efficient Hybrid Replication Protocol for High Available Distributed System (고 가용성 분산 시스템을 위한 효율적인 하이브리드 복제 프로토콜)

  • Youn Hee Yong;Choi Sung Chune
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.171-180
    • /
    • 2005
  • In distributed systems data are replicated and stored at several nodes to increase the availability and overall performance. Here Quorum protocol doffing a certain set of replicas required for read/write operation exists for global concurrency control. One of the representative replication Protocols - the Tree Quorum protocol - has a drawback of rapidly growing number of replicas as the level increases, while the Grid protocol requires the same operation cost even without any failure. In this paper, thus, we propose a new replication protocol called hybrid protocol which capitalizes the merits of the existing protocols and solves the problems of them at the same time. The proposed hybrid protocol has very low operation cost in the absence of failure like the tree quorum protocol, and has relatively lower operation cost and higher availability than existing protocols when failure occurs by employing tree architecture as the overall organization while each level of the tree is organized as a row of a grid architecture. It is thus effective to be applied to survival storage system. We conduct cost and availability analysis of the proposed protocol through mathematical modeling, and response time and throughput are compared with those of the Tree Quorum protocol through computer simulation.

A Study on the Mathematical Programming Approach to the Subway Routing Problem (지하철 차량운용 문제에 대한 수리적 해법에 관한 연구)

  • Kim, Kyung-Min;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1731-1737
    • /
    • 2007
  • This paper considers subway routing problem. Given a schedule of train to be routed by a railway stock, the routing problem determines a sequence of trains while satisfying turnaround time and maintenance restrictions. Generally, the solution of routing problem is generated from set partition formulation solved by column generation method, a typical integer programming approach for train-set. However, we find the characteristics of metropolitan subway which has a simple rail network, a few end stations and 13 departure-arrival patterns. We reflect a turn-around constraint due to spatial limitations has no existence in conventional railroad. Our objective is to minimize the number of daily train-sets. In this paper, we develop two basic techniques that solve the subway routing problem in a reasonable time. In first stage, we formulate the routing problem as a Min-cost-flow problem. Then, in the second stage, we attempt to normalize the distance covered to each routes and reduce the travel distance using our heuristic approach. Applied to the current daily timetable, we could find the subway routings, which is an approximately 14% improvement on the number of train-sets reducing 15% of maximum traveling distance and 8% of the standard deviation.

  • PDF

Mathematical Modelling and Chaotic Behavior Analysis of Cyber Addiction (사이버 중독의 수학적 모델링과 비선형 거동 해석)

  • Kim, Myung-Mi;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.245-250
    • /
    • 2014
  • Addiction can be largely divided into two categories. One is called medium addiction in which medium itself causes an addiction. Another is called cause addiction that brings addiction through combination of sensitive self and latent personal action. The medium addiction involves addiction phenomena directly caused by illegal drugs, alcohol and various other chemicals. The cause addiction is dependent on personal sensitivities as a sensitive problem of personal and includes cyber addictions such as shopping, work, game, internet, TV, and gambling. In this paper we propose two-dimensional addiction model that are equivalent to using an R-L-C series circuit of Electrical circuit and a Spring-Damper-mass of mechanical system. We also organize a Duffing equation that is added a nonlinear term in the proposed two-dimensional addiction model. We represent periodic motion and chaotic motion as time series and phase portrait according to parameter's variation. We confirm that among parameters chaotic motion had addicted state and periodic motion caused by change in control coefficient had pre-addiction state.

Incineration Process of Double Base Propellant for Demilitarization (더블 베이스 추진제의 비군사화 소각공정)

  • Lee, Si-Hwang;Baek, Seung-Won;Moon, Il;Park, Jung-Su;Oh, Min
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • The thermal decomposition of waste energetic materials such as TNT, RDX and composition B in a commercial rotary kiln has previously been carried out. As part of the demilitarization process, the thermal decomposition of homogeneous double base propellant (DB) used in M8 and consisting predominantly of nitrocellulose and nitroglycerine is examined with respect to a number of operating conditions. A single condensed phase reaction with 4 species and 365 gas phase reactions and 59 species are considered. Simulation results show the sensitivity of the thermal decomposition of DB with temperature and velocity. At relatively low velocity with constant inlet hot air temperature, temperature in the rotary kiln was found to be highest, 953 K and 1300 K for cases 3 and 6 respectively. Illustrating that optimum operating temperature can be achieved by controlling the inlet velocity without additional cooling systems.

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.

A Study on the Characteristics of Time Dependent Temperature Change in a Automobile Washer Heater (자동차 워셔액 가열시스템의 온도 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Lee, Seong-Bong;Lee, Dong-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1040-1044
    • /
    • 2013
  • The present paper has been accomplished to elucidate the characteristics of temperature change in a car washer heater system for removal of frost formed at the surface of a car. The previous studies had used a simplified mathematical modeling to analyse the temperature change characteristics for a car washer heater system. In the present study, an unsteady computational fluid flow and heat transfer analysis for a washer heater system has been done by using computational fluid dynamic analysis method. From the present CFD analysis, the time dependent temperature change in a car washer heater system has been analysed and derived the heating time and ejection temperature of the washer liquid to establish the optimal design basis for a washer heater system.

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

The Research of Layout Optimization for LNG Liquefaction Plant to Save the Capital Expenditures (LNG 액화 플랜트 배치 최적화를 통한 투자비 절감에 관한 연구)

  • Yang, Jin Seok;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • A plant layout problem has a large impact on the overall construction cost of a plant. When determining a plant layout, various constraints associating with safety, environment, sufficient maintenance area, passages for workers, etc have to be considered together. In general plant layout problems, the main goal is to minimize the length of piping connecting equipments as satisfying various constraints. Since the process may suffer from the heat and friction loss, the piping length between equipments should be shorter. This problem can be represented by the mathematical formulation and the optimal solutions can be investigated by an optimization solver. General researches have overlooked many constraints such as maintenance spaces and safety distances between equipments. And, previous researches have tested benchmark processes. What the lack of general researches is that there is no realistic comparison. In this study, the plant layout of a real industrial C3MR (Propane precooling Mixed Refrigerant) process is studied. A MILP (Mixed Integer Linear Programming) including various constraints is developed. To avoid the violation of constraints, penalty functions are introduced. However, conventional optimization solvers handling the derivatives of an objective functions can not solve this problem due to the complexities of equations. Therefore, the PSO (Particle Swarm Optimization), which investigate an optimal solutions without differential equations, is selected to solve this problem. The results show that a proposed method contributes to saving the capital expenditures.