• Title/Summary/Keyword: 수치항공사진

Search Result 303, Processing Time 0.239 seconds

Coastline Change on the Haeundae Beach using the Digital Aerial Photo (수치항공사진을 이용한 해운대해수욕장 해안선변화에 관한 연구)

  • Choi, Chul-Uong;Kim, Young-Seup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 2001
  • There has been considerable controversy over the changes in the size of the beaches in the Pusan area; any loss of beach area will have an immense effect on the tourism industry, which is an important source of income for the local economy. The best beaches in Korea are in the Pusan area and were visited by more than 8 million persons in 2000. It is expected that the number of visitors, drawn to the scenic vistas and convenient facilities of this area, will increase annually. Any loss in the size of these swimming beaches will have an important negative effect on tourism income. Therefore, the local governments have gone to great lengths to preserve these beaches, transporting tens of thousands of tons of sand to the beaches before they open each year at a cost of billions of won annually. In this study, we analyzed aerial photographs and tide data for the past 50 years using digital aerial photo analysis and GIS techniques for each 3-year interval. We abstracted beach DEM (digital elevation model) and ortho aerial photographs, and conducted a space analysis. As a result, we were able to identify changes in the area and width of sections of Haeundae Beach.

  • PDF

To Evaluate the Accuracy of DEMs Derived from the Various Spectral Bands of Color Aerial Photos (컬러항공사진의 밴드별 수치표고모형 정확도 평가)

  • Kim, Jin-Kwang;Hwang, Chul-Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • In this study, Digital Elevation Models (DEMs) were constructed from color images, grayscale images and each bands (Red, Green, Blue) of color image, and the accuracies of each DEMs were evaluated, And then, correlation coefficients between left and right images of each stereopairs were analyzed. The DEM can be constructed conventionally from the digital map and stereopair images using image matching. The image matching requires stereo satellite images or aerial photographs. In case of rotor aerial photographs, these are to be scanned in 3 bands (Red, Green, Blue). For this study, 5 types of images were acquired; color, grayscale, RED band, GREEN band, and BLUE band image. DEMs were constructed from 5 types of stereopair images and evaluated using elevation points of digital maps. In order to analyze the cause of various accuracies of each DEMs, the similarity between left and right images of each stereopairs were analyzed. Consequently, the accuracy of the DEM constructed from RED band images of color aerial photograph were proved best.

Small Scale Digital Mapping using Airborne Digital Camera Image Map (디지털 항공영상의 도화성과를 이용한 소축척 수치지도 제작)

  • Choi, Seok-Keun;Oh, Eu-Gene
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • This study analyzed the issues and its usefulness of drawing small-scale digital map by using the large-scale digital map which was producted with high-resolution digital aerial photograph which are commonly photographed in recent years. To this end, correlation analysis of the feature categories on the digital map was conducted, and this map was processed by inputting data, organizing, deleting, editing, and supervising feature categories according to the generalization process. As a result, 18 unnecessary feature codes were deleted, and the accuracy of 1/5,000 for the digital map was met. Although the size of the data and the number of feature categories increased, this was proven to be shown due to the excellent description of the digital aerial photograph. Accordingly, it was shown that drawing a small-scale digital map with the large-scale digital map by digital aerial photograph provided excellent description and high-quality information for digital map.

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Analysis of Digital Photographic Interpretation Status Map Production Technic for the Architecture Information Management (건축물 정보 관리를 위한 수치 판독현황도 제작 기법 해석)

  • Kim, Won-Dae;Kim, Jeong-Hoon;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • To manage the architecture information of Seoul, aerial photographs have been taken and Photographic Interpretation Status Maps(PISP) have been produced through interpretation process. However PISP of SEOUL has a number of errors and difficulties to update maps, owing to its analogue formation by hand skill. In this study, some digitizing methods are tested to make Digital Photographic Interpretation Status Maps(DPISP). The digitizing methods by scanning maps, using ortho-images and true ortho-images, digital correction plotting process, and LiDAR techniques were used for comparative analysis of PISP. As a result of this study, the author suggest DPISP by the digital correction plotting method is proper for economical efficiency and its accuracy of the architecture information.

Development of Digital Map On-demand Updating System (수치지도 수시갱신 시스템 개발)

  • Lee, Jae-Kee;Lee, Dong-Ju;Jung, Sung-Heuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.537-546
    • /
    • 2008
  • The digital map has been updated in every five years in the past. However, it has been changed to make corrections and updated in every two years for metropolitan region and every four years for other regions since year 2008. Although, the correctness and reliability were decreased and updating work is being delayed due to the updating work in a lump. The period update spends a lot of money because this method uses aerial photogrammetry, and the digital map has the time gap between periods. Therefore, this study provides information necessary for digital map produced by the government and develops digital map production system based on objects which can be updated frequently in order to save state and local government budgets that double investment are generated to update digital map. In order to analyze usefulness of the developed system, subject area was selected and errors of updated data were analyzed. As the result of analysis, checked 66 errors were corrected and saved in the database.

GPS-Assisted Aerotriangulation (GPS를 이용한 항공삼각측량)

  • 김감래;김충평;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 1999
  • Aerotriangulation for the large scale mapping(photo-scale l/5,000) was studied with the projection center determined by kinematic DGPS positioning. For the feasibility study, the accuracy and error was analyzed with the comparison between a projection center from the conventional model adjustment and the projection center determined by the kinematic DGPS positioning. Kinematic DGPS-supported Bundle adjustment was also performed. The accuracy of projection center, determined by L1 phase data observed within 30 km from base station, was stable, and the planimetric accuracy(RMS) is 13 cm and the vertical accuracy(RMS) is 15 cm with 4 ground control points, which satisfies the national standard of digital mapping. Thus, this study shows that GPS-assisted aerotriangulation can be used for economic digital mapping.

  • PDF

Application of RFM for DEM Generation (위성영상의 수치고도모형의 생성을 위한 RFM의 적용성에 관한 연구)

  • 손홍규;박정환;유형욱
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.10a
    • /
    • pp.169-174
    • /
    • 2002
  • 위성영상을 이용하여 수치표고모형을 제작하기 위해서는 영상정합이 가장 중요한 필수 과정이다. 하지만 위성영상은 항공사진과 달리 off-nadir 현상으로 인해 동일 영상내의 공칭 해상도가 달라질 수 있고 관측각에 따라 보다 심한 기하학적 왜곡이 발생할 수 있기 영상정합이 쉽지 않다 본 연구에서는 다항식비례모형을 이용한 대상공간영상정합기법을 적용하여 위성영상에 대한 영상정합을 성공적으로 수행하였고 이를 통해 수치표고모형을 제작, 그 정확도를 평가하고 적용 가능성을 제시하였다.

  • PDF

Updating of Digital Map using Digital Image and LIDAR (디지털 영상과 LIDAR 자료를 이용한 수치지도 갱신)

  • Yun, Bu-Yeol;Hong, Jung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 2006
  • LIDAR(Light Detection and Ranging) is a new technology for obtaining DEM(Digital Elevation Model)ewith high density and high point acuracy. As LIDAR emerged, DEM could be developed in the earthsurface more efficiently and more economically, compared to the conventional aerial photogrametry.In this study, a digital camera is simultaneously used in combined LIDAR surveying, and acquired digitial image and DEM produce digital orthoimage. In this process, methods of combining sensor andorthoimage, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; onewith a few GCP and the other without them. The produced maps can be used to corect or revised1:1,000 or 1:5,000 scale maps acordingly.

  • PDF

Verification of Two Dimensional Hydrodynamic Model Using Velocity Data from Aerial Photo Analysis (항공사진분석 자료를 이용한 2차원 하천흐름 해석모형의 검증)

  • Seo, Il Won;Kim, Sung Eun;Minoura, Yasuhisa;Ishikawa, Tadaharu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.515-522
    • /
    • 2011
  • The hydrodynamic models are widely used in the research for analysis of flow characteristics and design of hydraulic structure and river channel. These models need to be calibrated with observed data. But, there are few field data of two-dimensional flow velocity in flood because the direct measurement of the flood flow velocity are very dangerous. For this reason the results of two-dimensional numerical models are usually calibrated and verified with only a few observed data. Moreover, the verification of numerical models for the design flood is usually carried out using the result of one-dimensional model, HEC-RAS. In this study, using the flow velocity profile extracted from the aerial photos of a flood of the Tone River in Japan, two-dimensional numerical models, RAM2 in RAMS, RMA2 in SMS, and one-dimensional numerical model, HEC-RAS which are most widely used in research and design work are verified and the validity for verification of two-dimensional models with HEC-RAS is reviewed. The results showed that the water surface elevation of HEC-RAS, RAM2 and RMA2 models have similar results with observed data. But, the velocity results of RAM2 and RMA2 models in the floodplain have some difference with the velocity from aerial photo analysis. And the velocity result of HEC-RAS has big difference with the sectional averaged value of velocity from aerial photo analysis.