• Title/Summary/Keyword: 수치판독

Search Result 68, Processing Time 0.025 seconds

An Improvement of Cadastral Non-coincidence Surveying Method using Digital Orthophoto (수치정사사진을 이용한 지적불부합지 조사 방법의 개선)

  • Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.23-32
    • /
    • 2006
  • This study shows that new methodology improved the problem of unaided eye test level with the digital orthophoto technique can survey more objectively and efficiently any cadastral non-coincidence than existing prior methodologies. For applying to it, we explore eligible other methodologies, and then build up the application strategy of them. New prototype system is implemented with it. Also, we say the availability of new methodology by applying to study area. As a result, we suggest cadastral non-coincidence surveying method based on point-correspondence more objective and more efficient. As a result of comparing with old method and new on same study area for making adequacy, they hardly ever has the difference of accuracy. Constantly, cadastral non-coincidence surveying method based on point-correspondence is acceptable way on the cadastral survey.

  • PDF

A Study on Utilizing 1:1,000 Digital Topographic Data for Urban Landuse Classification (도시지역 토지이용분류를 위한 1:1,000 수치지형도 활용에 관한 연구)

  • Min, Sookjoo;Kim, Kyehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.149-156
    • /
    • 2006
  • Existing method of landuse classification using aerial photographs or field survey requires relatively higher amount of time and cost due to necessary manual work. Especially in urban area where the pattern of landuse is densely aggregated, a landuse classification using satellite image is more complex. In this background, this study proposes a landuse classification method to utilize 1:1,000 digital topographic data and IKONOS satellite image. To prove the possibility of this method, the method was applied to Seoul metropolitan area. The results shows the total accuracy of approximately 95% and 14 landuse classes extracted. Based on the results from the pilot study, this method is applicable to landuse classification in urban area.

Position Error Analysis of Digital Map for LIS/GIS Database (LIS/GIS의 D/B구축을 위한 수치지도의 위치오차분석에 관한 연구)

  • 조규전;이영진;홍용현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In the digital mapping for data base contruction, the positional information is used as an important tool in LIS/GIS(Land Information System/Geographic Information System) that is used for a facility management, urban/cadastral management as well as in spatial analysis. In this paper, for an error analysis of X, Y coordinates data on digital map, test area was classified by topography, density, and slope. The coordinates on topographic map were assumed as true values and they were compared with the coordinates on digital map. A result of the numerical test show that a vector data of line type had more gross error than vector data of polygon type. And, SME(stanadrd mean error) of urban or intermountain area had small values compared to that of suburban area in topography analysis. The SME of dense and middle zone had small values compared to that of loose zone in density analysis. In another slope analysis. the SME of steep of gentle slope had small values compared to that of flatland.

  • PDF

Advanced National Base Map by Using High-Resolution Digital Aerial Photograph (고해상도 디지털 항공사진을 이용한 국가기본도 고도화 방안)

  • Lee, Hyun-Jik;Koo, Dae-Sung;Park, Chan-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.135-143
    • /
    • 2010
  • The national base map has its value sand roles as the basic spatial information of the nation. The current national base map that is a 1/5,000 digital map, however, has failed to perform its roles as basic spatial information due to the limitations with its quality and accuracy and requires measures to complement them. Thus this study set out to suggest ways to advance the current 1/5,000 national base map, selected topography and natural features of a digital map that could be made with GSD 0.25m digital aerial photographs, and set up the optimal ways to make a digital map by conducting an experiment of making an optimal digital map with such photographs. It also analyzed the map made with GSD 0.25m digital aerial photographs for accuracy and usability. In order to establish a set of criteria of making a digital map with GSD 0.25m digital aerial photographs, the investigator carried out analyses and picked topography and natural features items, which include 9 large categories, 31 medium categories, and 509 small categories. Then an experiment of making a digital map was conducted according to the digital map making method. As a result, solid drawing was selected as the optimal way to making a digital map, and the optimal process was established. Using the research achievements, a model digital map was made with GSD 0.25mm digital aerial photographs. The map recorded about two times horizontal and vertical location accuracy than the old 1/5,000 digital map and was capable of detailed descriptions of topography and natural features. A new national base map made with GSD 0.25m digital aerial photographs will provide reliable spatial data, thus increasing the level of satisfaction among people and the level of advancement of national base maps.

The criterion Decision of Map Generalization for building by Human Vision (휴먼비전에 의한 건물의 지도일반화 기준결정)

  • Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.735-742
    • /
    • 2009
  • National Geographic Institute recently has produced a national paper map by means of a computer aided editing system using a national digital map 2.0. However, the map generalization should be made due to the portrayal difference between the digital map and the paper one and the criterion of the map generalization should be determined by the visual image. The tolerance limit of the map generalization has to be decided based on human vision. For this purpose, this study attempts to measure the size of the building on various scale map and then analyze its result. As a consequence, this study shows us that the building size eligible for human vision should be over 0.4mm in the short side of building on the map. The tolerance limit of an isolated building, a reduced building and a densely built-up area for the map generalization is based on the criterion mentioned above.

분할영상의 계층적 구조를 이용한 주제도 갱신방법

  • 조현국;이승호;김철민;김경민;원현규
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.347-347
    • /
    • 2004
  • 임상도는 항공사진을 판독하여 얻어진 산림에 관한 정보를 지형도(1/25,000)에 도화 작성한 도면으로 전국 산림조사와 연계하여 10년을 주기로 순환제작 되며, 현재 제 4차 수치임상도가 제작 중에 있다 임상도는 여러 산림관련 주제도 중 가장 많이 활용되는 도면으로 산림 분야뿐만 아니라 다른 분야에서도 널리 활용되고 있다. 그러나 10년을 주기로 제작되므로 부분적으로 현실과 부합하지 않는 내용이 포함되어 있어 각종 계획수립 및 활용에 장애요인으로 작용하고 있다. 따라서 실제 임상정보를 획득할 수 있도록 지속적인 갱신이 필요하다. 그러나 임상도의 부분적 갱신을 위하여 별도의 항공사진을 촬영하는 것은 현실적인 어려움이 있으며, 최근 고해상도 위성영상이 활용 가능하게 됨에 따라 임상도의 갱신에도 활용될 수 있을 것으로 기대되고 있다. 본 연구에서는 고해상도 위성영상인 IKONOS를 이용하여 수치임상도를 갱신하는 방법을 제시하였다. 연구대상지는 제 4차 임상도의 수치화가 완료된 전라북도 완주 지역으로 1:25000 지형도의 도엽명 대아와 읍내의 일부지역이다. 영상자료는 2001년 8월 18일에 촬영된 IKONOS Multispectral 자료를 이용하였다. 영상의 기하보정을 위하여 RPC Model과 1:25000 수치지형도로부터 만들어진 DEM을 사용하였다. 기하보정된 영상을 이용하여 영상분할(Segmentation)을 실시하여 서로 중복되지 않는 동질한 지역으로 구분하였다. 이때 기존의 수치임상도를 Super-Object로 사용하여 영상을 분할할 때 형성될 수 있는 가장 큰 Segment로 제한하였으며 Super-Object의 경계를 벗어나지 않는 보다 작은 Sub-Object를 만들도록 하여 분할영상의 계층적 구조를 형성하였다. 어느 한 임상내에서 변화가 발생하면 변화가 발생한 지역은 변화가 발생하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.

  • PDF

Prediction of Obstructive Coronary Artery Disease by Coronary Artery Calcification Finding on Low-dose CT Image for screening of lung diseases: Compared with Calcium Scoring CT (폐질환 선별검사를 위한 저선량 CT영상의 관상동맥 석회화 소견으로부터 폐쇄성 관상동맥질환 예측: 석회화수치 CT검사와 비교)

  • Lee, Won-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.333-341
    • /
    • 2011
  • To compare between calcium scoring CT (CSCT) and Low-dose CT (LDCT) image finding for coronary artery calcification (CAC) in screening of lung disease by MDCT. A total of 61 subjects who retired-workers exposed to inorganic dust were performed LDCT and CSCT by using a MDCT scanner on the same day, after be approved by the institutional review board, and obtaining the written informed consent from all subjects. LDCT images were read for detecting lung diseases as well as CAC by a experienced chest radiologist, then the subjects were divided either the positive group with CAC or the negative group without it. The CSCT was used to quantify and detect the presence of calcification in the coronary artery, and score of CAC calculated by using a Rapidia software (ver 2.8). In all coronary arteries, calcium score of positive group was higher better than that in negative group, especially in the total calcium (13.7 vs. 582.9, p=0.008) and the left anterior descending artery (3.2 vs. 249.0, p=0.006). CAC findings between CSCT and LDCT image were showed excellent agreement in cut-off point 100(K-value=0.80, 95% CI=0.69-0.91) from total calcium score. CAC findings on LDCT images showed the higher relation with CSCT. Therefore, the obstructive coronary artery disease could be predicted by CAC on LDCT images for screening of lung diseases.

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.

Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model (Random Walk Model을 활용한 우면산 토석류 거동 분석)

  • Kim, Gihong;Won, Sangyeon;Mo, Sehwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • Recently, because of increasing in downpour and typhoon, which are caused by climate changes, those sedimentation disasters, such as landslide and debris flow, have become frequent. Those sedimentation disasters take place in natural slope. In order to predict debris flow damage range within wide area, the response model is more appropriate than numerical analysis. However, to make a prediction using Random Walk Model, the regional parameters is needed to be decided, since the regional environments conditions are not always same. This random Walk Model is a probability model with easy calculation method, and simplified slope factor. The objective of this study is to calculate the optimal parameters of Random Walk Model for Umyeon mountain in Seoul, where the large debris flow has occurred in 2011. Debris flow initiation zones and sedimentation zones were extracted through field survey, aerial photograph and visual reading of debris flow before and after its occurrence via LiDAR DEM.

A Production of Orthophoto Map from Aerial Photos using Digital Photogrammetry Technique (수치사진측양기법(數値寫眞測量技法)에 의한 항공사진(航空寫眞)으로부터 정사투영사진지도(正射投影寫眞地圖)의 제작(製作))

  • Yeu, Bock-Mo;Lee, Hyun-Jik;Jeong, Soo;Jo, Hong-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.1 s.3
    • /
    • pp.73-80
    • /
    • 1994
  • Most terrain information have been generally acquired by map. Because the map presents the real terrain, not by real figure but by contours, geometric figures, symbols, texts, and colors, it is not easy to interpret the real terrain by map. For this reason, aerial photos or terrestrial photos also have been used sometimes in the terrain analysis. But photos have geometrical displacement caused by the position of camera at the exposition time and the relief of the object. So, for accurate posional analysis, orthophoto maps produced by optical rectifier have been used. But, it is hard to produce orthophoto map by optical rectifier and the process is so slow. This study aims to present an accurate and rapid method to produce orthophoto map by generating digital elevation model from stereo aerial photos on common computer using the digital photogrammetric technique and producing orthophoto map digitally using the digital elevation model.

  • PDF