• Title/Summary/Keyword: 수치파 수조

Search Result 84, Processing Time 0.024 seconds

Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver (HLLC Approximate Riemann Solver를 이용한 천수방정식 해석)

  • Kim, Dae-Hong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • The propagation and associated run-up process of nearshore tsunamis in the vicinity of shorelines have been analyzed by using a two-dimensional numerical model. The governing equations of the model are the nonlinear shallow-water equations. They are discretized explicitly by using a finite volume method and the numerical fluxes are reconstructed with a HLLC approximate Riemann solver and weighted averaged flux method. The model is applied to two problems; The first problem deals with water surface oscillations, while the second one simulates the propagation and subsequent run-up process of nearshore tsunamis. Predicted results have been compared to available analytical solutions and laboratory measurements. A very good agreement has been observed.

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

A Study on the Effect of Hull Appendages of High-Speed Catamarans with Modified-reverse bow on the Running Performance (반전형 선수부 형상을 갖는 고속 쌍동선의 부가물이 주행성능에 미치는 영향에 관한 연구)

  • Kim, Do-jung;Na, Hyun-ho;Kim, Jung-eun;Oh, Do-won;Choi, Hong-sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.601-608
    • /
    • 2019
  • In this study, the effect of hull appendages on the high-speed catamarans with reverse bow shapes is compared and analyzed by numerical analysis and circulating water tank model test. The reverse bow shape showed an improved wave shape by shifting the generation position of forward divergent wave to the stern direction and was effective in resistance and stable running posture (Kim et al., 2019). In the model test results of the running performance as the wave patterns and the change of the running posture due to the fin fitted with the inner side of the inverted bow and the interceptor, 1) Trim characteristics of the inverted bow 2) Improvement of superposition of inner wave by Fin 3) The trim control by the fin and the interceptor is considered to be effective in reducing the impact of the two hull connection decks (wetdeck).

Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater (불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발)

  • Hur, Dong-Soo;Jeon, Ho-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.483-489
    • /
    • 2011
  • In this study, the coupled-numerical model has been newly developed to investigate numerically scouring and deposition around a coastal structure like a submerged breakwater using a numerical wave model and a lagrangian particle model for sand transport. As a numerical wave model, LES-WASS-2D (Hur and Choi, 2008) is adopted. The model is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance term and determine the eddy viscosity with LES turbulence model. Distinct element method (Cundall and Strack, 1979), which is able to apply to many dynamical analysis of particulate media, as a lagrangian particle model for sand transport is newly coupled to the numerical wave model. The numerical simulation has been carried out to examine the scour problem in front of an impermeable submerged breakwater using the newly coupled-numerical model. The numerical results has been compared qualitatively with an existing experimental data and then its applicability has been discussed.

Regular Wave Generation Using Three Different Numerical Models under Perfect Reflection Condition and Validation with Experimental Data (세 가지 수치모델을 이용한 완전반사 조건에서의 규칙파 조파 및 수리실험 검증)

  • Oh, Sang-Ho;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.199-208
    • /
    • 2019
  • Regular waves were generated in a wave flume under perfect reflection condition to evaluate performance of three CFD models of CADMAS-SURF, olaFlow, and KIOSTFOAM. The experiments and numerical simulations were carried out for three different conditions of non-breaking, breaking of standing waves, and breaking of incident waves. Among the three CFD models, KIOSTFOAM showed best performance in reproducing the experimental results. Although the run time was reduced by using CADMAS-SURF, its computational accuracy was worse than KIOSTFOAM. olaFlow was the fastest model, but active wave absorption at the wave generation boundary was not satisfactory. In addition, the model excessively dissipated wave energy when wave breaking occurred.

Bed Load Transport by Waves and Current (파와 해류에 의한 소류사 이동)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.257-264
    • /
    • 1995
  • Various factors are investigated on the bed load transport driven by waves and current, and proper forms of bed load transport formulas mainly used in river hydraulics are chosen for the estimation of combined flow bed load transport after considering the additional factors. The BYO Model is employed for the computation of maximum bed shear stress and mean bed shear stress of the combined flow. The friction factor of uni-directional flow is estimated by using modified Keulegan equation, and equivalent roughness height is determined by obtaining correct answer for the bed shear stress of uni-directional flow. Empirical constant in each bed load formula is determined by applying it to Bijker's laboratory data of bed load transport by waves and current and the formulas obtained are discussed on their final forms with the values of empirical constants.

  • PDF

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.