• Title/Summary/Keyword: 수치유체해석

Search Result 1,739, Processing Time 0.033 seconds

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+ (유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.

A Study of using Wall Function for Numerical Analysis of High Reynolds Number Turbulent Flow (고 레이놀즈수 유동의 수치해석시 벽함수 사용에 관한 연구)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.647-655
    • /
    • 2010
  • In this paper, a numerical study is carried out for super-pipe, flat plate and axisymmetric body flows to investigate a validity of using wall function and high $y_1^+$ in calculation of high Reynolds number flow. The velocity profiles in boundary layer agree well with the law of the wall. And it is found that the range of $y^+$��which validated the logarithmic law of the wall grows with increasing Reynolds number. From the result, an equation is suggested that can be used to estimate a maximum $y^+$ value of validity of the log law. And the slope(1/$\kappa$) of the log region of the numerical result is larger than that of experimental data. On the other hand, as $y_1^+$ is increasing, both the friction and the pressure resistances tend to increase finely. When using $y_1^+$ value beyond the range of log law, the surface shear stress shows a significant error and the pressure resistance increases rapidly. However, when using $y_1^+$ value in the range, the computational result is reasonable. From this study, the use of the wall function with high value of $y_1^+$ can be justified for a full scale Reynolds number ship flow.

Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker (MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구)

  • Park, Il-Ryong;Kim, Ki-Sup;Kim, Je-In;Seol, Han-shin;Park, Young-Ha;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.

Numerical Analysis of the Wake of a Surface Ship Model Mounted in KRISO Large Cavitation Tunnel (KRISO 대형 캐비테이션터널 시험조건의 함정 모형선 반류에 대한 수치해석적 연구)

  • Park, Il-Ryong;Kim, Je-In;Kim, Ki-Sup;Ahn, Jong-Woo;Park, Young-Ha;Kim, Myoung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.494-502
    • /
    • 2016
  • The accurate assessment of hull-appendage interaction in the early design stage is important to control the inflow to the propeller plane, which can cause undesirable hydrodynamic effects in terms of cavitation phenomenon. This paper describes a numerical analysis for the flow around a fully appended surface ship model for which KRISO has carried out a model test in the Large Cavitation Tunnel(LCT). This numerical study was performed with the LCT model test in a complementary manner for a good reproduction of the wake distribution of surface ships. A second order accurate finite volume method provided by a commercial computational fluid dynamics(CFD) program was used to solve the governing Reynolds Averaged Navier-Stokes(RANS) equations, where the SST $k-{\omega}$ model was used for turbulence closure. The numerical results were compared to available LCT experimental data for validation. The calculations gave good predictions for the boundary layer profiles on the walls of the empty cavitation tunnel and the wake at the propeller plane of the fully appended hull model in the LCT.

Aerodynamic Drag Reduction on High-performance EMU Train by Streamlined Shape Modification (유선형 형상 개선을 통한 고성능 EMU 열차의 공기저항 저감 연구)

  • Kwon, Hyeok-Bin;Hong, Jai-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The effect of modifying the shape of a high-performance EMU train on the aerodynamic drag is studied here using Computational Fluid Dynamics(CFD) based on three dimensional Steady-state Navier-Stokes equation and two equation turbulence modeling. FLUENT 12 and Gambit 2.4.6 are employed for a numerical simulation of the aerodynamic drag of a streamlined-shape train as well as a proto type train. The characteristics of the aerodynamic drag of trains in tunnels are analyzed in a comparison with these characteristics in an open space. The contribution of the aerodynamic drag of each case is also investigated to establish principal pertaining to drag reduction for urban trains in tunnels. The aerodynamic drag of a streamlined train was reduced to 9.8% relative to a proto-type train with a blunt nose and a protruding roof facility and underbody shape: the running resistance is expected to be reduced by as much as 4% at a running speed of 80km/h.

A Study on the Wind Pressure Coefficients of Flat-type Apartment Complexes Considering Building Layout and Aspect Ratio (판상형 공동주택의 동 배치 및 종횡비에 따른 풍압계수 특성에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.153-159
    • /
    • 2021
  • In this study, basic data that can be referenced for ventilation modeling was presented by analyzing the characteristics of wind pressure coefficients(Cp) according to wind direction angles under conditions of different building layouts and aspect ratios through CFD (Computational Fluid Dynamics) analysis for flat-type apartment complexes. In the case of a wind direction angle of 0°, Cp distribution in the form of an inverted S-shape was shown on the front of the building located on the windward side. And Cp corresponding to the lowest floor, the uppermost floor, and the two inflection points showed relatively close values regardless of the height of the building. The inflection point of the low-rise part was formed at a height of about 11m, and the height of the high-rise part could be calculated through a trend formula proportional to the height of the building. It was confirmed that the averaged Cp value can be applied in most conditions except for the wind direction angle of 45 degrees.

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.