• 제목/요약/키워드: 수출입 동향

검색결과 102건 처리시간 0.014초

B2B 전자상거래 정보를 활용한 시장 융합 기회 발굴 방법론 (Discovery of Market Convergence Opportunity Combining Text Mining and Social Network Analysis: Evidence from Large-Scale Product Databases)

  • 김지은;현윤진;최윤정
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.87-107
    • /
    • 2016
  • 융합을 통한 기술과 제품의 혁신을 이해하는 것은 중소기업의 생존을 위한 필수가 되었다. 특히, 이종 산업간 융합을 통한 제품 혁신과 성공을 위해서는 융합 가능한 아이템 즉, 제품과 기술, 아이디어를 탐색하고 대안을 찾는 것이 중요하다. 기존의 융합연구는 크게 두 가지의 한계를 갖는다. 첫째, 특허와 논문 등 기술정보를 기반으로 하는 기술융합 발굴은 시장의 수요를 인식하는데 한계가 있다. 본 논문은 중소 창업기업에 적용할 수 있는 시장융합(Market convergence)의 관점에서 새로운 융합 기회를 식별하려고 시도하였다. 이를 위해 세계 중소 수출입 기업이 이용하는 글로벌 B2B e-마켓플레이스의 제품 데이터베이스를 활용하였다. 둘째, 기존의 융합기회 발굴 연구는 이미 융합되어 존재하는 제품 또는 기술 기반의 연관성 및 관계를 파악하는데 집중하였다. 본 연구에서는 융합 가능한 새로운 사업기회의 발굴을 목적으로 구조적공백(Structural Hole) 이론을 적용하여, 상이한 산업군에서 서로 직접적인 연결 관계가 없는 키워드 간의 네트워크를 분석하여 융합의 가능성이 있는 새로운 융합 사업 테마를 도출하고자 한다. 이를 위해 제품명과 제품 기술서를 기반으로 제품 및 기술 용어 사전과 텍스트마이닝 을 활용하여 제품과 서비스의 특성을 추출하고, 이들 특성간 연관관계분석을 수행한 후, 네트워크 분석을 진행 하였다. 실험 데이터는 시장의 최신 동향을 파악하기 위해 2013년 1월 부터 2016년 7월까지 등록된 24만건의 e-카탈로그를 대상으로 하였으며, 분석의 효율성을 높이기 위해 기술 범위를 IT로 제한하고, IT 기술을 매개로 한 "Health & Medical"과 "Security & Protection" 카테고리 간의 융합 기회를 도출 하였다. 실험을 통하여 융합연관규칙 1,729을 추출하였으며, 지지도를 기반으로 100개의 규칙을 샘플링 하여, 구조적 공백을 분석하였다.

부산항 컨테이너 물동량의 중간예측 (Mid-Term Container Forecast for Pusan Port)

  • 구자영
    • 한국항만학회지
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 1997
  • 우리나라에서의 해상물동량은 거시적분석법과 미시적분석법을 병행해서 예측하고 있다. 우선 거시적방법으로 국내외경제동향 및 각종 지표분석을 하여 항만물동량을 전망하고, 미시적방법으로는 품목별 생산, 소비, 수출입 수급량예측을 한 다음, 정부 및 관련업계, 기관의 추정치를 참고로하여 최종 예측물동량을 확정하는 것이 일반적이다. 또, 지정항만의 물동량예측에 있어서도 전체물동량 예측값에서 대상항만이 그 나라에서 차지하는 비율 혹은 평균증가율에 따라 그 예측치를 산정 하고 있다. 이러한 방법은 다른 경쟁항만의 개발 및 변화에 따른 영향이 요소로서 전혀 고려되고 있지 않아 국제경쟁력시대에 맞지 않아 예측량이 실제값과 근사한 값으로 접근할 가능성은 작다. 따라서 이러한 문제점들을 최대한으로 수정, 보완해서 항만의 운영효율고취 및 대외경쟁력고취를 위한 종합적인 분석을 통해 항만의 물동량을 예측해야 할 필요가 있다. 본 연구에서는 이러한 종합적인 분석을 위해서 우선 주위 경쟁 중심항만(Hub Ports)간에 나타나고 있는 물동량 유동 형태(Flow Patten)를 MRCS(다변량곡면)를 통해 파악했다. 그리고 그 유동형태를 구성하는 각 요소간의 관계를 분석했다. 예를들면 선석수와 물동량과의 관계, 크레인수와 물동량과의 관계, 선석수와 크레인 수와의 관계, 선석 및 크레인수와 선박의 기항수와의 관계, 선석 및 크레인수와 항만요금(하역 및 제요금포함)과의 관계, 항만요금과 GNP, 임금수준과의 관계 등의 분석을 통해서 이러한 요소들간의 영향력을 분석했다. 이러한 분석결과, 각 항만 정보요소간의 관계는 표 3.5-표 ,3.9와 같은 관계를 알 수 있었고, 표 3.11에 나타난 것과같이 평균오차 5.5%란 결과를 도출 하였다. 또 동/동남아시아 주요 중심항만(코베, 홍콩 싱가포르, 카오슝, 부산들)간의 물동량 유동형태를 그대로 유지한다고 가정했을 때, 2011년 (총선석 57, 크레인수 l18기 기준)의 부산항 예상 물동량은 약 1,490만TEU로 계산되었다. 이상의 결과를 미루어 볼 때, 어느 항만의 물동량 예측은 해당항만 자체의 정보뿐만 아니라 경쟁항만의 정보를 종합적으로 분석한 것을 기초로하여 행해져야 할 것으로 사려된다.

  • PDF