• Title/Summary/Keyword: 수초

Search Result 207, Processing Time 0.032 seconds

Metabolic Brain Disease : Leukodystrophy (대사성 뇌 질환)

  • 김인원
    • Proceedings of the KSMRM Conference
    • /
    • 1999.04a
    • /
    • pp.99-108
    • /
    • 1999
  • 선천성 대사 이상은 다양한 뇌질환으로 나타낸다. 일반적으로 이 질환들은 하나 또는 둘이상의 대사경로에 대한 생화학적 이상에 원인이 있다. 정상적 생화학적 산물의 결핍이나 비정상적 산물의 축적에 의한 뇌기능 이상에 의해 임상증상이 나타내게 되는데 그 증상은 대개 경기, 경직성, 발육지연 등으로 비특이적이고 영상소견도 마찬가지로 비특이적이다. 대사 이상에 있어서의 신경병변은 일부 뇌백질을 주로 침범하는 경우를 제외하면 대부분 뇌백질을 침범하고 따라서 일반적으로 일차성 뇌백질 질환이 대사성 뇌질환을 일컫는다고 할 수가 있다. 뇌백질 질환은 뇌백질의 구성원중 가장 큰 부분을 차지하는 수초(myelin)를 침범하는 질환을 일컫는다. 중추신경계의 백질은 수초로 싸여있는 축삭(axon)과 선경교세포 (neuroglial cell) 및 혈관 등으로 구성되어 있으며, 이중 대부분을 수초가 차지하고 이 수초로 인하여 정상 뇌백질이 흰색을 나타낸다. 백질내의 신경교세포로는 성상세포 (astrocyte) 와 핍지세포 (oligodendrocyte)가 있으며 신 경교세포의 가장 중요한 기능은 핍지세포에 의한 축삭의 외피화 (ensheathment) 즉, 수초이다. 수초는 핍지세포의 세포질 돌기 (cytoplasmic process)의 일부이며 따라서 수초의 생존과 대사는 핍지세포와 운명을 같이한다. 일반적으로 세포의 생존, 대사와 가장 관련있는 기능은 세포질내에 함유되어 있는 구조물인 소기관(organelle)에 의하여 수행된다. 따라서, 비록 모든 소기관들이 백질 질환을 이르키는데 직접 연관되어 있지는 않더라도 수초의 생존과 대사에는 핍지세포의 소기관들이 매우 중요한 역할을 하게 된다. 세포질내 중요한 소기관으로는 세포 막, 미토콘드리아 (mitochondria), endoplasmic reticulum, Golgi 체, lysosome, peroxisome 그리고 세포질등이 있으며, 이들중에서 lysosomes, peroxisomes, 그리고 미토콘드리아가 특정한 유전성 백질질환에 중요한 역할을 하는 것이 밝혀졌다. 이러한 질환들은 최소한 각 소기관에 의한 질환군으로 분류될 수 있다.

  • PDF

Demyelination in natural canine distemper encephalomyelitis : An immunohistochemical study of myelin basic protein, myelin associated glycoprotein and glial fibrillary acidic protein in the lesion of demyelination (홍역이환개에서 발생한 수초탈락성 뇌척수염 : 수초탈락부위에서 MBP, MAG 및 GFAP의 면역조직학적 관찰)

  • Shin, Tae-kyun;Kwon, Oh-deog;Lee, Du-sik;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.295-300
    • /
    • 1993
  • Central nervous system of two dogs with natural canine distemper was investigated histopathologically and immunocytochemically with antisera to MBP, MAG and GFAP. Histopathologically, there were neuronal degeneration and diffuse gliosis in the cerebrum, vacuolar degeneration, hypertrophy of astrocytes and demyelination in cerebellar white matter adjacent to the 4th ventricle and optic tracts showing non-inflammatory demyelinating encephalomyelitis (Summers and Appel, 1987). Immunohistochemically, there was a concurrent disappearance of MBP and MAG in the well developed demyelinating lesion in the cerebellar white matter. At the margin of demyelination, Loss of both MBP and MAG varied on the stage of demyelinating process. GFAP-positive astrocytes were hypertrophied and contained canine distemper virus intranuclear inclusions. GFAP-positive fibers were increased at the early stage of demyelination, and then were not immunoreaeted at the well developed demyelination. Hypertrophic astrocytes with intranuclear inclusions were commonly identified in the interfascular layer without myelin vacuolation and demyelination. This is the first study of primary demyelination and astroglial reactions in natural CDE investigated using immunocytochemistry of two myelin proteins and GFAP. Concurrent loss of MBP and MAG suggest that the myelin sheath is the target in the demyelinating process in CDE.

  • PDF

Generation of myelination with neural cell cultures in rats and suppression of myelination by infection of sindbis virus (쥐의 신경세포 배양에 의한 수초 발생과 sindbis 바이러스 감염에 의한 수초 억제)

  • Sa, Young-Hee;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.528-532
    • /
    • 2019
  • The dorsal root ganglion (DRG) was isolated from mouse embryos and Schwann cells and neuronal cells were cultured in vitro. The neurons and Schwann cells were cultured separately and the two kinds of cells were cultured together for three weeks. Generation of myelination was confirmed by transmission electron microscope and confocal microscope using a myelinaion protein, myelin protein zero (MPZ) antibody. The sindbis virus was infected for three days in the myelinated culture cells and then demyelination was carried out. The process of demyelination was also confirmed by transmission electron microscopy and confocal microscopy using myelin protein zero (MPZ) antibody. The study was supported by a Basic Research Program through the National Research Foundation (NRF) funded by the Ministry of Science and Technology, ICT and Future Plans (NRF-2016R1A2B4016552 and 2017R1A2B3005753).

  • PDF

Infection of Semliki Forest Virus Induces Demyelination of Neuron (Semliki Forest Virus 감염은 뉴우런의 탈수초를 유발한다)

  • Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1212-1217
    • /
    • 2017
  • We constructed a population of myelinated cells with co-culture of neuronal cells and Schwann cells from DRG. Schwann cells and neuronal cells were isolated from dorsal root ganglion (DRG) in embryos of rat in vitro respectively. The cultured Schwann cells and cultured neuronal cells, respectively were co-cultured in a same plate. This procedure contains following four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitoticcocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. These cells were performed accomplishment of myelination. This myelinated co-culture system was infected by Semliki forest virus and then induced demyelination processing in this myelinated co-culture. We identified myelination and demyelination processing using antibody of peripheral myelin protein 22 (PMP 22) meaning presence of myelinated neuron.

Myelination by co-culture of neurons and schwann cells and demyelination by virus infection (뉴런세포와 슈반세포의 공동배양에 의한 수초화와 바이러스 감염에 의한 탈수초화)

  • Sa, Young-Hee;Kweon, Tae Dong;Kim, Ji-Young;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.448-451
    • /
    • 2018
  • The purpose of this study was to investigate the developmental process of myelination by neuron and Schwann cell cultures and the development of demyelination by herpes simplex virus-1 infection by electron microscopy and molecular biological analysis. The dorsal root ganglion (DRG) was isolated from the mouse embryo and Schwann cells and neuronal cells were cultured in vitro. Neuronal cells treated with mitotic inhibitors and purified Schwann cells were co-cultured together to induce myelination. The herpes simplex virus-1 was infected with the co-cultured cells, and the demyelination was induced. The myelin protein zero (MPZ) antibody, which means the presence of myelin formation, was used and electron microscopy was used to observe the development of myelin and dehydration.

  • PDF

Effects of Artificial Vegetation Island on Fish Fauna (인공수초섬이 어류상에 미치는 영향)

  • Byeon, Myeong-Seop;Park, Hae-Kyung;Jeon, Nam-Hui;Choi, Myeong-Jae;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • To investigate the effects of artificial vegetation island (AVI) on fish distribution, we compared fish fauna from artificial vegetation island (AVI) area, which installed in 2000, natural vegetation area (NVA) and vegetation-free area (VFA) at Kyungan Stream area of Lake Paldang from Jul. to Nov., 2005. Results showed that 11 families 23 genera 24 fish species were distributed in the AVI and NVA. Squalidus japonicus coreanus, a small-size fish which generally lives at the downstream, dominated absolutely in the individual numbers. However, only 6 families 11 genera 12 species of fishes caught at the VFA, and dominant fishes were Hemibarbus labeo and Erythroculter erythropterus, a medium to large-size migratory fishes which live in mid-depth of water column. The dominance index was high at the AVI (0.778) and NVA (0.868), whereas the diversity index and evenness index were high at the VFA. Fish distribution at AVI was similar to that of the NVA in numbers of species, indicating that the AVI could playa role as spawning and inhabitation zone to a variety of fishes. We believe that AVI may be used for a restoration of the damaged and disturbed littoral ecosystem.

Induction of Demyelination of Neuronal cells by Sindbis Virus (Sindbis Virus에 의한 뉴런세포의 탈수초의 유도)

  • Sa, Young-Hee;Kim, Hyun Joo;Kweon, Tae Dong;Kim, Ji-Young;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.584-587
    • /
    • 2018
  • Many viruses including mouse hepatitis virus, corona, measles, and sidbis viruses are known as causative virus of inducing demyelination which means destruction of myelination in nervous system of mice. The purpose of this study is to investigate processing of myelination by co-culture of Schwann cells and neuronal cells and demyelination induced by infection of sindbis virusin rat. Schwann cells and neuronal cells from dorsal root ganglion (DRG) in embryos (E16) of rat were cultured in vitro respectively. The purified neuronal cells with anti-mitotic agents and purified Schwann cells were co-cultured. After that, infection of sindbis virus into this myelinated co-culture system was performed. Myelination and demyelination process were observed using antibody of myelin basic protein meaning presence of myelination.We identified myelination and demyelination processing using antibody of peripheral myelin protein 22 (PMP 22) meaning presence of myelinated neuron. This study was supported by the Basic Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A01053484 and 2017R1A2B3005753).

  • PDF

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat (랫트에서 수초화를 위한 슈반세포와 뉴런세포의 공동배양)

  • Kweon, Tae-Dong;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.822-825
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

  • PDF

Demyelination of Myelinated Neuronal cells by Infection of Herpes Simplex Virus-1 (Herpes Simplex Virus-1감염에 의한 수초화 뉴우런의 탈수초)

  • Kim, Hyun Joo;Kim, Ji-Young;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.919-922
    • /
    • 2016
  • Neuronal cells and Schwann cells from dorsal root ganglion (DRG) in embryos of rat were isolated and cultured in vitro respectively. The purified neuronal cells added with anti-mitotic agents and purified Schwann cells were co-cultured and then accomplished myelination processing. This myelinated co-culture system was infected by herpes simplex virus-1 and then accomplished demyelination processing in this myelinated co-culture. We identified myelination and demyelination processing using antibody of neuropeptide Y meaning presence of myelinated neuron.

  • PDF