• Title/Summary/Keyword: 수질정화기능

Search Result 93, Processing Time 0.034 seconds

Physicochemical Properties and Distribution of Heavy Metals in Stream Sediments of the Daejeon Area (대전지역 주요하천 하상퇴적물의 물리화학적 특성 및 중금속 분포)

  • Jeong, Chan-Ho;Lee, Sang-Gu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.259-264
    • /
    • 2006
  • This work carried out to analyze the physicochemical properties and investigate the assessment of heavy metal contamination of stream sediments of the Yudeung and the Gab streams in the Daejeon area. The pH of stream sediments of the Yudeung stream shows the range of weak acid and weak alkaline. Most of stream sediments contain about 80% sand grain and have low water and cation retention capacity. Hence the stream sediments are not suitable fur various plans to grow up. The analysis of heavy metals in the stream sediments shows that the concentration of Pb, Cr and Cd increases from upstream to down stream. It is likely that the trend has a relationship with the water. Contamination of stream water. The authors recommend that clay materials be replenished in the stream sediments to increase the self-purification capacity and to make the suitable condition for growing up of various plants, and that water quality of the stream which can Influence into the contamination of stream sediments be monitored.

Eco-friendly Design of Horticultural Complex through Application of Saemanguem Areas (시설원예 단지의 친환경적 조성 계획의 새만금지역 적용 연구)

  • Son, Jinkwan;Kang, Taegyoung;Kang, Donghyeon;Lim, Ryugab;Kim, Changhyun;PARK, Minjung;KONG, Minjae
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2020
  • The agricultural landscape is considered an important space to provide service functions, but the reality is that environmental and ecological problems are being reported in the creation of a facility horticulture complex. Therefore, this study was conducted to contribute to sustainable agriculture by creating a more eco-friendly facility horticultural complex. The elements of planning for eco-friendly development of the facility horticultural complex were derived from literature and expert surveys. The master plan and the bird's-eye view were then applied to the Saemangeum area by applying the planning elements. After analyzing the method of selecting and deploying input elements for improving functions, it was suggested that low-flow areas, wetlands, artificial storage facilities, green spaces, and waterways should be placed in harmony with the landscape and that the building-to-land ratio should be applied at 55%. The final design was prepared by applying the ecological service function improvement plan proposed by experts. The final bird's-eye view also reflected water purification facilities, connection of wetlands to waterways, packing of pitchers, and connection of green areas. The results of the research are expected to be used as basic data for policy and budget allocation for the eco-friendly creation of horticulture facilities and contribute to sustainable agriculture by contributing to national biodiversity and environmental preservation.

Wave Attenuation due to Water-Front Vegetation (수변식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.341-347
    • /
    • 2008
  • Recently, it has been widely recognized that water-front and coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors playa major role in the functions of water quality and ecosystems. However, the studies on numerical and analytical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of water-front vegetations. In this study, in order to express wave attenuation into water-front vegetation, a numerical model based on the unsteady mild slope equation is developed. This result is compared with an analytical model for describing the wave attenuation by assumed simple long wave condition. Based on both the analytical and numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through comparisons between the analytical and numerical results, the effects of the vegetation properties, wave properties and model parameters such as the momentum exchange coefficient have been clarified.

A Study on Environmental.Mine Geographic Information System Approach for the Sustainable Mine Management and Prevention of Mine Hazards - Focused on the Environmental Section - (지속가능한 휴폐광산 관리 및 공해 방지를 위한 환경.광산 지리정보체계 구축 및 개선 연구 - 환경부분 중심으로 -)

  • Lee, Ju-Young;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.129-143
    • /
    • 2009
  • In South Korea, Mine industries were encouraged to obtain the natural resource from 1960 to 1980. However, the depletion of natural resource and decreasing price have been caused by the voluntary closure of non-economical mines and a cut of their production since 1990. Harmful wastewater containing such heavy metals as iron, aluminum, arsenic, and cadmium are being discharged from abandoned pits and waste stone and tailing dumping sites following the closure of mines. Therefore, the objective of this paper suggests a policy of mine hazard prevention(PMHP) and method that allows the combination of new spatial data and as well as collected data on resources for the sustainable mine reclamation and management using EGIS/MGIS technique to develop an integrated plan and management techniques.

  • PDF

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석탄재 및 고분자화합물을 이용한 포러스콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Lee, Jun;Jang, Young-Il;Cho, Kwang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.901-904
    • /
    • 2008
  • Immense quantities of coal combustion by-products are produced every year, and only a small fraction of them are currently utilized. Therefore, this study investigated and analyzed the applications of porous concrete for the efficient utilization of bottom ash. This study examines on application of polymer to improve strength properties of porous concrete using coal-ash. As the results, when the mixing ratio of bottom ash increases, void ratio and coefficient of permeability of porous concrete increases, but its strength decreases. Also, as the mixing ratio of polymer increases, its void ratio and coefficient of permeability decreases. When specific amount of polymer is mixed, we can find its strength properties are improved.

  • PDF

A Study on the Application of Manganese Oxidizing Bacteria for Manganese Treatment in Acid Mine Drainage (산성광산배수의 망간처리를 위한 MOB 적용에 관한 연구)

  • Lee, Kang Yu;Jang, Min;Park, In Gun;Um, Tae Young;Lim, Kyeong Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.564-570
    • /
    • 2013
  • Domestic treatment facilities for acid mine drainage (AMD) mostly used a passive treatment process. But some passive treatment facility discharged high manganese concentrations because it is required high pH (>9) for abiotic oxidation of Mn(II) to Mn(IV). This study was focused on the feasibility of biological manganese treatment using the manganese-oxidizing bacteria (Pseudomonas sp. MN5) from AMD and economical application method of it. To investigate the various conditions of water quality the most part of the experiments were based on batch test. And result of it showed that maximum manganese oxidation rate were $10.4mg/L{\cdot}h$ at the pH7. We also performed small column tests in which MOB were attached to the functional polyurethane (FPU) media containing alkaline chemicals. Manganese concentration decreased 42 mg/L to below 6 mg/L. But anaerobic condition formed by excessive bacterial respiration in column resulted in increasing effluent manganese concentration.

Dynamics of Attached Microbial Community on the River with Gravel Riverbed (자갈하상 하천에서 부착미생물군집의 거동)

  • Park, Jae-Young;Choi, I-Song;Oh, Jong-Min
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.235-244
    • /
    • 2005
  • This study was carried out in Osan river to quantitatively investigate behavior of attacked microbial community (AMC) for enhancing self-purification process of river. We gained the results such as follows throughout long-term monitoring at in-situ river. The biomass of AMC had higher in the riffle than the almost stagnant pool and they were more developed in the riffle with high current velocity (HCV). Although the fast flowing current affects negatively to growth of the AMC during the early phase when the community gets attached to the benthic substrate, it was observed that it affected positively to their growth during the intermediate and later phase after the community is adapted to the substrate. When turbulence due to external pressure (storm or discharge of dam and reservoir) occurs, the degree of separation depends upon the flowing strength and the type of the external pressure. Since the community is not all separated, recovery is rather fast. Therefore, this study found that the degree of reduction of the pollutant by self-purification of the stream is depended upon the riverbed shape and the AMC contributes to self-purification positively or negatively in river. Therefore, the riverbed shape must be constructed in accordance with the characteristics of water quality in stream. Furthermore, the technique of installing the water channel structure appropriate for each section must be developed to maximize self-purification ability.

Nitrogen Budget Analysis Using a Box Model for Hajeon Tidal Flat in the West Coast of Korea (Box model을 이용한 서해 곰소만 하전 갯벌의 질소 수지)

  • Yoo, Jae-Won;Hong, Jae-Sang;Yang, Sung-Ryull;Park, Kyeong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.257-266
    • /
    • 2002
  • To estimate the nitrogen budget and assess the purification function of a tidal flat ecosystem, a field survey was carried out at Hajeon tidal flat in Gomso Bay, the southern part of Byeonsan Peninsula, Chollabuk-do, Korea. A study area of 3.0$\times$4.5 ㎢ was established on the tidal flat and the concentrations of chlorophyll-a, DIN, DON, and TN were measured in the water column during the period of April 17-18, 1999: From the budget analysis, the loss rate of Chl-a was estimated to be -0.05 mg Chl/㎡/hr, which is approximately 7% of that at Issiki tidal flat in Aichi Prefecture, Japan. The lower loss rate of Chl-a in the study area was attributable to the lower standing crop of phytoplankton, the lower temperature that may reduce metabolic rates of biotic components and the lower biomass of macrobenthos in the study area. Over the 13.5 ㎢ of study area, Hajeon tidal flat removed 8.36$\times$10$\^$2/ kg N/day of TN, 5.36$\times$10$\^$3/ kg N/day of PON and 1.62$\times$10$\^$2/ kg N/day of phytoplankton-related PON, showing that the tidal flats may play an important role in removing nitrogen in coastal waters. The removal rate of PON, compared to the removal cost of the existing waste water treatment facilities, indicates that the economic value of the purification function of Hajeon tidal flat (13.5㎢) may be more than that of two large facilities.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.