DOI QR코드

DOI QR Code

A Study on the Application of Manganese Oxidizing Bacteria for Manganese Treatment in Acid Mine Drainage

산성광산배수의 망간처리를 위한 MOB 적용에 관한 연구

  • Lee, Kang Yu (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Jang, Min (Department of Civil Engineering, Faculty of Engineering, University of Malaya) ;
  • Park, In Gun (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Um, Tae Young (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Lim, Kyeong Ho (Department of Civil and Environmental Engineering, Kongju National University)
  • 이강유 (공주대학교 건설환경공학부) ;
  • 장민 (말라야대학교 토목공학과) ;
  • 박인건 (공주대학교 건설환경공학부) ;
  • 엄태영 (공주대학교 건설환경공학부) ;
  • 임경호 (공주대학교 건설환경공학부)
  • Received : 2013.06.28
  • Accepted : 2013.08.21
  • Published : 2013.08.30

Abstract

Domestic treatment facilities for acid mine drainage (AMD) mostly used a passive treatment process. But some passive treatment facility discharged high manganese concentrations because it is required high pH (>9) for abiotic oxidation of Mn(II) to Mn(IV). This study was focused on the feasibility of biological manganese treatment using the manganese-oxidizing bacteria (Pseudomonas sp. MN5) from AMD and economical application method of it. To investigate the various conditions of water quality the most part of the experiments were based on batch test. And result of it showed that maximum manganese oxidation rate were $10.4mg/L{\cdot}h$ at the pH7. We also performed small column tests in which MOB were attached to the functional polyurethane (FPU) media containing alkaline chemicals. Manganese concentration decreased 42 mg/L to below 6 mg/L. But anaerobic condition formed by excessive bacterial respiration in column resulted in increasing effluent manganese concentration.

산성광산배수처리를 위한 국내 대부분의 처리시설은 자연정화법을 사용하고 있으며 이들 중 일부 처리장에서는 고농도의 망간이 유출되고 있는데 이는 망간산화를 위해 높은 pH (>9)가 요구되기 때문이다. 본 연구는 망간처리 공정 중 경제성을 높일 수 있는 생물학적 망간처리의 가능성을 타진하는데 그 목적이 있으며 망간산화미생물은 Pseudomonas sp. MN5를 이용하였다. 회분식 실험을 통해 수질조건에 따른 영향을 분석한 결과 pH 7에서 최고산화속도는 $10.4mg/L{\cdot}h$로 나타났다. 망간산화미생물을 담지한 연속류 실험결과 운전 초기 망간 농도는 42 mg/L에서 6 mg/L 이하로 크게 감소하였지만 망간산화미생물의 산소소비에 의한 혐기조건 형성으로 망간의 재용출 현상이 나타났다.

Keywords

References

  1. Sommerfeld, E. O., Iron and Manganese Removal Handbook., AWWA, pp. 3-5(1999).
  2. Driehaus, W., Seith, R. and Jekel, M., "Oxdation of arsenate( III) with manganese oxides in water treatment," Water Res., 29(1), 297-305(1994)
  3. Kostka, J. E., Luther III, G. W. and Nealson, K. H., "Chemical and biological reduction of Mn(III)-pyrophosphate complexes potential importance of dissolved Mn(III) as an environmental oxidant," Geochim. Cosmochim. Acat., 59(5), 885- 894(1995).
  4. Klewicki, J. K. and Morgan, J. J., "Kinetic behavior of Mn (III) complexes of pyrophosphate, EDTA, and citrate," Environ. Sci. Technol., 32(19), 2916-2922(1998). https://doi.org/10.1021/es980308e
  5. Hallberg, K. B. and Johnson D. B., "Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors," Sci. Total. Environ., 338, 115-124 (2005). https://doi.org/10.1016/j.scitotenv.2004.09.011
  6. Banks, D., Younger, P., Arnesen R.-T., Iversen E. R. and Banks S. B., "Mine water chemistry: the good, the bad and the ugly," Environ. Geol., 32(3), 154-174(1997).
  7. Bradley, P. M., Landmeyer J. E. and Dinicola R. S., "Anaerobic oxidation of [1,2-$^{14}C$] dichloroethene under Mn(IV)- reducing conditions," Appl. Environ. Microbiol., 64, 1560-1562(1998).
  8. Sheoran, A. S. and Sheoran, V., "Heavy metal removal mechanism of acid mine drainage in wetland: A critical review," Minerals Eng., 19, 105-116(2006). https://doi.org/10.1016/j.mineng.2005.08.006
  9. bin Jusoh, A., Cheng, W. H., Low, W. M., Nora'aini, A. and Megat Mohd Noor, M. J., "Study on the removal of iron and manganese in groundwater by granular activated carbon," Desalination, 182, 347-353(2005). https://doi.org/10.1016/j.desal.2005.03.022
  10. Han, S. C., Choo, K. H., Choi, S. J. and Benjamin, M. M. "Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment," J. Membr. Sci., 290, 55-61(2007). https://doi.org/10.1016/j.memsci.2006.12.022
  11. Geremias, R., Laus, R., Macan, J. M., Pedrosa, R. C., Laranjeira, M. C., Silvano, J. and Favere, F. V. "Use of coal mining waste for the removal of acidity and metal ions Al (III), Fe (III), and Mn (II) in acid mine drainage," Environ. Technol., 29(8), 863-869(2008). https://doi.org/10.1080/09593330802015409
  12. Douka, C. E., "Study of bacteria from manganese concretion Precipitation of manganese by whole cells and cell-free extracts of isolated bacteria," Soil Biol. Biochem., 9, 89-97 (1977). https://doi.org/10.1016/0038-0717(77)90043-8
  13. Lee, S. H. and Park, K. R., "Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein," J. Life Sci., 18(1), 84-90(2008). https://doi.org/10.5352/JLS.2008.18.1.084
  14. Enrlich, H. L., "Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule formation enrichment," Appl. Microbiol., 11, 15-19(1963).
  15. Boogerd, F. C. and J. P. M. de Vrind, "Manganese oxidation by Leptothrix discophora," J. Bacteriol., 169, 489-494(1987). https://doi.org/10.1128/jb.169.2.489-494.1987
  16. Adams, L. F. and W. C. Ghiorse., "Influence of manganese of growth of a sheathless strain of Leptothirx discophora," Appl. Environ. Microbiol., 49, 556-562(1985).
  17. Nairn, B. and Hedin, R. S., Contaminant removal capabilities of wetlands constructed to treat coal mine drainage, Lewis Publisher, Boca Raton, pp. 187-195(1993).
  18. Katsoiannis, I. A. and Zouboulis, A. I., "Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization," Water Res., 38, 1922-1932(2004). https://doi.org/10.1016/j.watres.2004.01.014