• Title/Summary/Keyword: 수직 하중에 대한 저항

Search Result 55, Processing Time 0.026 seconds

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity (수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동)

  • Park, Byong-Jeong;Song, In-Hawn
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Dynamic analyses were carried out to study the seismic response of high-rise steel moment-resisting frames in sixteen story buildings. The frames are intentionally designed by three different design procedures; strength controlled design. strong column-weak beam controlled design. and drift controlled design. The seismic performances of the so-designed frames with vertical mass irregularities were discussed in view of drift ratio. plastic hinge rotation, hysteretic energy input and stress demand. A demand curve of hysteretic energy inputs was also presented with two earthquake levels in peak ground accelerations for a future design application.

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

An Evaluation of Progressive Collapse Resisting Capacity of RC Structure Using Static and Dynamic Analysis (정적 및 동적 해석을 이용한 철근콘크리트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.238-245
    • /
    • 2010
  • Progressive collapse is defined as a collapse caused by sectional destruction of a structural member which links to other surrounding structures. Currently the design guidelines for the prevention of progressive collapse is not available in Korea. So, structural engineers have a difficulty in evaluating progressive collapse. In this study, the static and dynamic analysis to evaluate the methods and procedures are conducted using commercial analysis program for RC moment resisting frames. According to the study, DCR value of RC moment resisting frame system based on code in Korea is over 2 and it shows that it can't provide alternate load paths due to the progressive collapse. And additional reinforcement should be considered for the progressive collapse resistance. As a result of vertical deflection and DCR value of linear static analysis and linear dynamic analysis, the results of dynamic analysis were underestimated more than the result of static analysis. Thus, the dynamic coefficient value of 2 provides conservative estimation.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Study of Structural Design Method of Friction Pendulum System for Fail Safe of a Sky-Bridge (스카이브릿지의 안전성확보를 위한 FPS 설계방법에 대한 연구)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3502-3507
    • /
    • 2013
  • If a sky-bridge is rigidly connected to adjacent buildings, the irregularity of the connected structures is increased resulting in providing a worse seismic behavior. Therefore, a friction pendulum system (FPS) or lead rubber bearing (LRB) is frequently used for the connection system between a sky-bridge and building structures. These connection systems should be carefully designed to prevent a skyfall of a sky-bridge subjected to severe seismic loads. In this paper, the inevitable structural design procedures for a sky-bridge connection system using a friction pendulum system without uplift resistance capacity have been investigated. To this end, Nuri Dream Square building structure is used as a example structure. The structural design process of a friction pendulum system for fail safe of a sky-bridge has been proposed in this paper by evaluating structural responses of the sky-bridge and building structures subjected to earthquake loads.