DOI QR코드

DOI QR Code

Natural Frequency Characteristics of Vertically Loaded Barrettes

수직하중을 받는 Barrette 말뚝의 고유진동수 특성

  • 이준규 (서울시립대학교 토목공학과) ;
  • 고준영 (충남대학교 토목공학과) ;
  • 최용혁 (서울시설공단 도로시설처) ;
  • 박구병 (한국교육시설안전원) ;
  • 김재영 (한국교육시설안전원)
  • Received : 2020.07.07
  • Accepted : 2020.10.26
  • Published : 2021.02.01

Abstract

In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

본 논문에서는 정적 수직하중을 받는 barrette 말뚝의 고유진동수를 산정할 수 있는 해석모델을 제안하였다. 비균질 지반에 설치된 직사각형 마찰말뚝의 자유진동을 지배하는 미분방정식을 유도하였다. 이 지배방정식을 Runge-Kutta 법을 이용하여 수치적분하였고, 미분방정식의 고유치인 고유진동수는 Regula-Falsi 법을 이용하여 산정하였다. 말뚝의 고유진동수는 유한요소해석의 결과와 잘 일치하였다. 말뚝의 고유진동수를 증가시키는 말뚝변수는 단면형상비, 마찰저항비, 지반강성비이고, 감소시키는 말뚝변수는 마찰형상비, 세장비, 압축계수이다.

Keywords

Acknowledgement

본 논문은 2020년도 서울시립대학교 교내학술연구비에 의하여 지원되었습니다.

References

  1. ADINA (2017). ADINA Release Notes Version 9.3.4, ADINA R & D, Inc., MA, USA.
  2. Al-Gahtani, H. and Mukhtar, F. M. (2014). "RBF-based meshless method for the vibration of beams on elastic foundations." Applied Mathematics and Computation, Vol. 249, pp. 198-208. https://doi.org/10.1016/j.amc.2014.09.097
  3. Baker, C. N., Azam, T. and Joseph, L. S. (1994). "Settlement analysis for 450 meter tall KLCC towers." Vertical And Horizontal Deformations of Foundations and Embankments: Proceedings Settlement '94, Geotechnical Special Publication, No. 40, pp. 1650-1671.
  4. Basu, D., Prezzi, M., Salgado, R. and Chakraborty, T. (2008). "Settlement analysis of piles with rectangular cross sections in multi-layered soils." Computers and Geotechnics, Vol. 35, No. 4, pp. 563-575. https://doi.org/10.1016/j.compgeo.2007.09.001
  5. Carpinteri, A., Malvano, R., Manuello, A. and Piana, G. (2014). "Fundamental frequency evolution in slender beams subjected to imposed axial displacements." Journal of Sound and Vibration, Vol. 333, No. 11, pp. 2390-2403. https://doi.org/10.1016/j.jsv.2014.01.018
  6. Cheng, Q., Wu, J., Song, Z. and Wen, H. (2012). "The behavior of a rectangular closed diaphragm wall when used as a bridge foundation." Frontiers of Structural and Civil Engineering, Vol. 6, No. 4, pp. 398-420.
  7. Choi, Y. S., Basu, D., Salgado, R. and Prezzi, M. (2014). "Response of laterally loaded rectangular and circular piles in soils with properties varying with depth." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 4, 04013049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001067
  8. Fellenius, B. H., Altaee, A., Kulesza, R. and Hayes, J. (1999). "O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 7, pp. 566-575. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(566)
  9. Gillat, A. and Subramaniam, V. (2013). Numerical methods for engineers and scientists, 3rd edition, John Wiley and Sons, New York, USA.
  10. Halabe, U. B. and Jain, S. K. (1996). "Lateral free vibration of a single pile with or without an axial load." Journal of Sound and Vibration, Vol. 195, No. 3, pp. 531-544. https://doi.org/10.1006/jsvi.1996.0443
  11. Hamza, M. and Ibrahim, M. H. (2000). "Base and shaft grouted large diameter pile and barrettes load tests." Proceedings GeotechYear 2000: Developments in Geotechnical Engineering, pp. 219-228.
  12. Heelis, M. E., Pavlovic, M. N. and West, R. P. (2004). "The analytical prediction of the buckling loads of fully and partically embedded piles." Geotechnique, Vol. 54, No. 6, pp. 363-373. https://doi.org/10.1680/geot.2004.54.6.363
  13. Hirai, H. (2014). "Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 12, pp. 1298-1320. https://doi.org/10.1002/nag.2270
  14. Hirai, H. (2015). "Analysis of rectangular piles subjected to lateral loads in nonhomogeneous soil using a Winkler model approach." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 39, No. 9, pp. 937-968. https://doi.org/10.1002/nag.2345
  15. Ho, C. E. and Lim, C. H. (1998). "Barrettes designed as friction foundations: A case history." Proceedings 4th International Conference on Case Histories in Geotechnical Engineering, pp. 236-241.
  16. Hong, Y. S., Yoo, J. W., Kang, S. K., Chou, M. B. and Lee, K. I. (2019). "A numerical study on the estimation method of the results of static pile load test using the results of Bi-directional pile load test of Barrette piles." Journal of Korean Geosynthetics Society, KGSS, Vol. 18, No. 1, pp. 39-53 (in Korean). https://doi.org/10.12814/JKGSS.2019.18.1.039
  17. Hu, C., Cheng, C. and Chen, Z. (2008). "Nonlinear transverse free vibrations of piles." Journal of Sound and Vibration, Vol. 317, No. 3-5, pp. 937-954. https://doi.org/10.1016/j.jsv.2008.03.064
  18. Lee, J. K. and Jeong, S. S. (2016). "Flexural and torsional free vibrations of horizontally curved beams on Pasternak foundations." Applied Mathematical Modelling, Vol. 40, No. 3, pp. 2242-2256. https://doi.org/10.1016/j.apm.2015.09.024
  19. Ma, J., Liu, F., Gao, X. and Nie, M. (2018). "Buckling and free vibration of a single pile considering the effect of soil-structure interaction." International Journal of Structural Stability and Dynamics, Vol. 18, No. 4, 1850061. https://doi.org/10.1142/S021945541850061X
  20. Maciejewska, B., Labedzki, P. A., Piasecki, A. and Piasecka, M. (2017). "Comparison of FEM calculated heat transfer coefficient in a minichannel using two approaches: Trefftz base functions and ADINA software." EPJ Web of Conferences, Vol. 143, No. 12, 02070.
  21. Ng, C. W. W. and Lei, G. H. (2003). "Performance of long rectangular barrettes in granitic saprolites." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 8, pp. 685-696. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(685)
  22. Ng, C. W. W., Rigby, D. B., Ng, S. W. L. and Lei, G. H. (2000). "Field studies of well-instrumented barrette in Hong Kong." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 1, pp. 60-73. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(60)
  23. Poulos, H. G., Chow, H. S. W. and Small, J. C. (2019). "The use of equivalent circular piles to model the behaviour of rectangular barrette foundations." Geotechnical Engineering Journal of the SEAGE and AGSSEA, Vol. 50, No. 3, pp. 106-109.
  24. Prakash, S. and Chandrasekaran, V. (1977). "Free vibration characteristics of piles." Proceedings Ninth International Conference on Soil Mechanics and Foundation Engineering, pp. 333-336.
  25. Prakash, S. and Sharma, H. D. (1990). Pile foundation in engineering practice, John Wiley and Sons, New York, USA.
  26. Rabaiotti, C. and Malecki, C. (2018). "In situ testing of barrette foundations for a high retaining wall in molasse rock." Geotechnique, Vol. 68, No. 12, pp. 1056-1070. https://doi.org/10.1680/jgeot.17.P.144
  27. Ragab, A. M. and Aggour, M. S. (1986). "Free vibration of a soil pile system subjected to static loading." Computers and Geotechnics, Vol. 2, No. 3, pp. 153-165. https://doi.org/10.1016/0266-352X(86)90025-X
  28. Ukritchon, B. and Keawsawasvong, S. (2018). "Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism." KSCE Journal of Civil Engineering, KSCE, Vol. 22, No. 7, pp. 2256-2265. https://doi.org/10.1007/s12205-017-0062-7
  29. Valsangkar, A. J. and Pradhanang, R. B. (1988). "Vibration of beam-columns on two-parameter elastic foundations." Earthquake Engineering and Structural Dynamics, Vol. 16. No. 2, pp. 217-225. https://doi.org/10.1002/eqe.4290160205
  30. Yan, W. and Chen, W. Q. (2012). "Dynamic analysis of semirigidly connected and partially embedded piles via the method of reverberation-ray matrix." Structural Engineering and Mechanics, Vol. 42, No. 2, pp. 269-289. https://doi.org/10.12989/sem.2012.42.2.269
  31. Yesilce, Y. and Catal, H. H. (2008). "Free vibration of piles embedded in soil having different modulus of subgrade reaction." Applied Mathematical Modelling, Vol. 32, No. 5, pp. 889-900. https://doi.org/10.1016/j.apm.2007.02.015
  32. Zhang, C., Deng, P. and Ke, W. (2018). "Kinematic response of rectangular piles under S waves." Computers and Geotechnics, Vol. 102, pp. 229-237. https://doi.org/10.1016/j.compgeo.2018.06.016
  33. Zhang, L. M. (2003). "Behavior of laterally loaded large-section barrettes." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 7, pp. 639-648. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(639)