• Title/Summary/Keyword: 수직 충격하중

Search Result 41, Processing Time 0.021 seconds

Evaluation of Floor Vibration Existing in Apartment Building (기존 아파트 바닥의 수직진동 성능 평가)

  • Han Sang Whan;Lee Min Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.221-228
    • /
    • 2004
  • In recent years building floors become larger and more spacious due to the development of new design methods and high strength and light weight materials. However, such long span floor systems may provide smaller amount of damping and have a longer period so that they may be more vulnerable to the floor vertical vibration. In Korea when floors are to be checked against the floor vertical vibration, the provisions developed in foreign countries have been used. However these guidelines have been developed based on human perception, which may vary from country to country. Also, Korea have particular floor systems, such as flat plate floor system of apartment building. This study attempts to evaluate the vibration performance of the floors in typical apartment buildings. Two different floors with the area of $28 m^2$ and $32 m^2$ were investigated. The criteria provided by ATC-1(1999), AISC-11(1997), AIJ(1991) and the local criteria developed in the previous study(Han, 2003) was used to check the acceptability of the floor vertical vibration.

Analysis of Dural-sac Cross Sectional Area Changes According to Vertical Impact rate (수직 충격률에 따른 척추 경막 단면적 변화 해석)

  • 김영은
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.421-425
    • /
    • 2003
  • In this study the occlusion of dural-sac. the outer membrane of spinal cord in the lumbar region. was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac for different compressive impact duration (loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. $\Delta$t = 400 msec case 4 % cross sectional area change was calculated. which is the same as the cross sectional area change under 6 kN of static compressive loading.

Probability Based Determination of Slab Thickness Satisfying Floor Vibration Criteria (수직진동 사용성 기준을 고려한 바닥판 두께 제안)

  • Lee Min-Jung;Nam Sang-Wook;Han Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.687-694
    • /
    • 2005
  • In current design practice, the thickness of the floor slab has been determined to satisfy requirement for deflection control. However, previous study shows that the floor thicknesses in residential buildings may not satisfy the floor vibration criteria, even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. This study attempts to propose slab thickness for flat plate slab systems that satisfies floor vibration criteria against occupant induced floor vibration(heel drop load). Two boundary conditions(simple and fixed support), three square flat plates(4, 6, 8m), and five concrete strength($18\~30$ MPa) are considered. Since there are large uncertainties in loading and material properties, probabilistic approach is adopted using Monte-Carlo simulation procedures.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

A Study on Durability Enhancement of Hopper of the Transplanter (정식기 호퍼 내구성 향상에 관한 연구)

  • Lee, Dongkeun;Kim, Young-Joo;Yang, Seung-Hwan;Lee, Sangdae;In, Hyunki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.51-51
    • /
    • 2017
  • 정식기는 주로 노외에서 사용되므로 사용자에 따라 극심한 작업환경 하에 놓일 수 있다. 사용 중 정식기 호퍼에 토양이나 자갈, 돌 등에 의해 반복적인 하중이 가해지거나 순간적인 충격하중이 가해져 취약부가 파손될 가능성이 있으므로, 토양과 직접 맞닿는 삽날부의 경우 내구성을 고려한 설계/제작이 필수적이다. 본 연구에서는 보행형 반자동 정식기 개발에서 고추묘와 같은 초장이 긴 작물의 묘를 효과적으로 이식할 수 있도록 개선된 삽날에 대해 기존 삽날과 강도 및 강성을 비교하고, 그 결과가 삽날의 내구성에 미칠 영향에 대하여 고찰하였다. 실험에는 양날 개폐 방식의 기존 및 개선삽날 2종이 사용되었으며, 각각 3회씩 정적 강도를 평가하였다. 실제 정식기 사용시 하중이 가해지는 방향은 삽날에 수직한 방향의 압축하중으로 이를 모사하여 일정변위 속도로 삽날에 하중을 가하였으며, 시험 진행시 DAQ 시스템을 통해 실시간으로 하중 및 변위 데이터를 저장하여 시험 종료 후 해당 데이터를 이용하여 $P-{\delta}$ 선도를 도출하였다. 시험 결과 기존삽날의 평균 최대하중이 개선삽날에 비해 높은 것으로 나타났으며, 최대 하중이 나타나는 지점의 변위의 경우, 기존삽날이 개선삽날에 비해 짧게 나타났다. 정적 강도측면에서 개선삽날이 기존삽날에 비해 최대 강도가 낮은 것으로 판단할 수 있으나, 실제 호퍼의 내구성에 영향을 줄 수 있는 주요 인자는 반복적으로 가해지는 비교적 낮은 수준의 충격하중으로 볼 수 있다. 이러한 관점에서 볼 때 일정 수준 이상의 강도를 가지면서, 기존삽날에 비해 낮은 강성을 가지는 개선삽날이 변형을 통한 충격에너지 흡수로 오히려 삽날 조립체(호퍼)의 내구성 측면에서 유리할 수 있다. 따라서 향후에는 기존 및 개선삽날을 적용한 호퍼에 대해 피로시험을 수행하여 관련 내용을 실험적으로 검증하고자 한다.

  • PDF

Experimental Study on the Dynamic Damage Mechanism of Rocks Under Different Impact Loadings (단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Ki, Seung-Kon;Park, Chan;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.545-557
    • /
    • 2009
  • In order to investigate dynamic damage mechanism of brittle materials, Split Hopkinson Pressure Bar (SHPB) have been adapted to apply different impact levels to rocks in South Korea. High resolution X-ray Computed Tomography (CT) was used to estimate the damage in tested rock samples nondestructively. The cracks which are parallel to the loading axis are visible on the contact surface with the incident bar under lower level of impact. The surface cracks disappeared with increment of impact level due to confined effect between the incident bar and sample, while axial splitting are happened near the outer surface.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.

Evaluation of Structural Performance and Dynamic Characteristics of Korean Traditional Timber Structure Sungnyemun (한국 전통 목조건축 숭례문의 구조성능 및 동적특성 평가)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.607-614
    • /
    • 2015
  • In this research, the structural analysis and safety evaluation for Sungnyemun -No.1 national treasure of Korea- was performed. Roof loads were calculated in detail, and structural analysis model was constructed using Midas Gen ver.820. Static structural analysis under vertical loads was performed and safety of main structural members and serviceability of main horizontal members were evaluated. To evaluate dynamic characteristics of Sungnyemun, both field measurements by impact hammer test and eigenvalue analysis by structural analysis software were performed and the results were compared. Sungnyemun showed rooms in their structural capacity.

Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity (상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, WeonCheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.