• Title/Summary/Keyword: 수직부재

Search Result 212, Processing Time 0.025 seconds

Nonlinear Analysis of Cyclic Lateral Forced RC Shear Wall (반복 횡하중을 받는 철근콘크리트 전단벽의 비선형 해석)

  • Kim, Geon-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Practicing engineers and researchers need computational tools that estimate accurately the cyclic response of RC walls, and in particular, force and deformation capacities and their materials strains. So this paper describes a nonlinear truss modeling approach for reinforced concrete walls, or in general, for plane stress reinforced concrete elements subjected to cyclic reversals. Nonlinear vertical, horizontal, and diagonal truss elements are used to represent concrete and steel reinforcement. The wall having aspect ratio of 1.2 was chosen to be compared with the experimental results. Here, four types of main diagonal member models and three types of diagonal members models were applied to find out more accurate results of analysis.

Strain-Based Shear Strength Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-200
    • /
    • 2008
  • An analytical model for predicting the shear strength of prestressed concrete beams was developed, applying the previously proposed strain-based shear strength model. In flexure-compression member without shear reinforcement, compression zone of intact concrete primarily resist to the shear force rather than tension zone. The shear capacity of concrete at the compression zone was defined based on the material failure criteria. The shear capacity of the compression zone was evaluated along the inclined failure surface considering interaction with the normal stress. Since the distribution of normal stress varies due to the flexural deformation of member, the shear capacity was defined as a function of the flexural deformation. Finally, the shear strength was determined at the intersection of the shear capacity curve and the shear demand curve. As a result of the comparisons to prior test data, the proposed model accurately predicted the shear strength of specimens.

  • PDF

A Decision-Making Model of Integrated Vertical and Horizontal Move Plan for Finishing Material in Righ-Rise Building Construction (고층건물공사 마감자재의 수직$\cdot$수평이동계획이 통합된 의사결정모델)

  • Ahn Byung-Ju;Kim Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.2 s.6
    • /
    • pp.47-58
    • /
    • 2001
  • Of all the site logistics technologies in high-rise building construction, both vertical and horizontal move plan, are the most imperative factors. And the horizontal plan follows lift-up plan as of the vertical plan. However though it may be, temporary lifts on site are numbered by heuristic formulas. The quantity of finishing material cannot be converted into lift-up load per finishing material. The lift-up plan cannot be evaluated the feasibility for finishing material move plan by a reasonable evaluation methodology. The horizontal plan is far from the vertical one. And the information as an input data for the horizontal plan is devoid of package unit size, length, and volume per finishing material. These can hardly result in reasonable and detail decision on how much to use temporary lifts, how long to use these, and where to deposit each finishing material. Therefore, this study is to suggest a decision-making model that can integrate vertical and horizontal material move plan in high-rise building construction and make a decision the plans systematically. And the study is to explain the concept, methodology, and contents of the model applied to a virtual project, named as MT 130 (Millennium Tower 130). By the model, the planner can shift his/her thinking framework on site logistics management products-oriented Into process-oriented. He/she can manage a project by the framework as system thinking, evaluate the feasibility of a lift-up plan, and decide the horizontal plan integrated with the lift-up.

  • PDF

Analysis of Ship Hull Plate Bending By Roll Bending Machine (Roll bending machine에 의한 선체외판의 곡면가공 해석)

  • Kim, You-Il;Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 1996
  • Pyramid type three roll bending machines are widely used in roll-bending process to produce singly curved plate. In forming singly curved plate, controlling the vertical displacement of the center roller is most important to acquire the shape required and automation system of the process. In this paper roller bending process is modeled as an elastic-plastic phenomenon and analyzed using beam theory and finite element method. In finite element analysis the workpiece is modeled by using beam elements and plane strain elements respectively. Through the analyses vertical center roller displacement is obtained to get constant curvature distribution along arc length. The relationship between center roller displacement and curvature in steady state as well as residual stress and strain along plate thickness direction are calculated through finite element analysis.

  • PDF

Evaluation of Structural Performance of Multi-tiered Roof Korean Traditional Timber Building Daeungbojeon Hall of Magoksa Temple Under Vertical Load (중층 전통 목조건축 마곡사 대웅보전의 수직하중에 대한 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper assesses the structural performance of the Daeungbojeon Hall of Magoksa in Gongju, a representative multi-tiered roof traditional timber structure from the Joseon Dynasty, under vertical loads. Employing midas Gen, a structural analysis software, we developed a three-dimensional analysis model closely resembling the actual structure. Static analysis was employed to evaluate the safety and serviceability of the main vertical and horizontal members under vertical loads. While all members met the safety and serviceability criteria, structural weaknesses were identified in the Daelyang of the lower floor, particularly as a transitional beam, necessitating improvement. For the evaluation of dynamic behavior characteristics, eigenvalue analysis was conducted, assuming a relative rotational stiffness of 5% at the main joints. The natural period was determined to be 1.105 seconds, placing it within the category of a Hanok of similar size. The first mode manifested as a translational movement in the forward and backward direction of the building.

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

An Elastic Static Analysis of Curved Girder Bridges by the Displacement Method (변위법(變位法)에 의한 곡선형교(曲線桁橋)의 정적탄성해석(靜的彈性解析))

  • Chung, Jin Hwan;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 1986
  • The stiffness matrix of circularly curved frame elements including the warping effects is formulated by the solutions of vlasov's differential equations, and the procedure for the elastic static analysis of curved girder systems by the displacement method is presented. The validity of this method has been demonstrated by comparing the analysis results with other solutions. And if the tangential lines of the two frame element axes connected at any nodal point coincide, the transformation to the global coordinate system can be omitted when we analyze the structures consisting of circularly curved elements. The theory introduced in this thesis can be applied with sufficient accuracy to the structures built up with horizontally circular curved frame elements which have closed or open cross sections and are symmetric to the axis perpendicular to the plane of the curvature, such as prestressed concrete box girder bridges.

  • PDF

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

Performance Evaluation for Deteriorated Masonry in Military Facilities (조적조 노후 군시설의 성능 평가)

  • Yang Eun-Bum;Shin kyoung-Hee;Hwang Jong-Hyun;Kim In-Ho;Kim Yong-In;Park Tae-keun;Lee Chan Shik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.434-438
    • /
    • 2001
  • Military facilities with masonry construction have a great portion in the whole military facilities. But lots of them have been used for more than 20 years, the degree of deterioration of the facilities are very serious. Futhermore, as small budget for the facilities maintenance and poor maintenance, the performance of the aged masonry facilities have continually decreased. We suggest a structural performance assesment criteria for the military facility through literature review, interview with experts and questionnaire. The assesment of structural performance includes the inclining and sinking degree of the facilities, durability of materials and resisting force of the structural members.

  • PDF