• Title/Summary/Keyword: 수지함침성

Search Result 3, Processing Time 0.015 seconds

Comparison of Resin Impregnation and Mechanical Properties of Composites Based on Fiber Plasma Treatment (섬유 플라즈마 처리에 따른 복합재료의 수지 함침성 및 기계적 특성 비교)

  • Seong Baek Yang;Donghyeon Lee;Yongseok Lee;Dong-Jun Kwon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.388-394
    • /
    • 2023
  • In composites manufacturing, increasing resin impregnation is a key way to speed up the manufacturing process and improve product quality. While resin improvement is important, simple fiber surface treatments can also improve resin flowability. In this study, different plasma treatment times were applied to carbon fiber fabrics to improve the impregnation between resin and fiber. Electrical resistivity measurements were used to evaluate the dispersion of resin in the fibers, which changed with plasma treatment. The effect of fiber surface treatment on resin spreadability could be observed in real time. When inserting a carbon fiber tow into the resin, the amount of resin that soaked into the tow was measured to objectively compare resin impregnation. Five minutes of plasma treatment improved the tensile and compressive strength of the composite by more than 50%, while reducing the void content and increasing the fire point impregnation flow rate. Finally, a dynamic flexural fatigue test was conducted using a portion of the composite used as an architectural composite part, and the composite part did not fail after one million cycles of a 3 kN load.

Impact Behaviors of Stitched Sandwich Composites Under Low Energy Impact Using Drop Weight Impact Tester (고낙하추 충격시험기를 이용한 스티칭된 샌드위치 복합재의 저에너지 충격거동 연구)

  • 윤성호;이상진;조세현
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.54-64
    • /
    • 1999
  • This study investigated the impact behaviors of the stitched sandwich composites under the low energy impact by the use of drop weight impact tester. These sandwich composites condidted of the glass fabric faces with a urethane foam core. The upper face and the lower face were stitched to combinr through the core thickness direction using the polyester reinforcements. Four types of the stitched sandwich composites, each having a different core thickness, were tested to determine the effects of the core thickness. The impact conditions were changes with the variations of the mass and drop height of the impact tup. The test results showed that the core thickness and the impact condidtions such as the drop height and the mass of the impact tup affected the impact force, the contact time, and the strain behaviors of the stitched sandwich composites. The stitched sandwich composites are able to avert the damage and also maintain the structural integrity even thouth the presence of the damage owing to the through-the-thickness reinforcements. However, it is important to improve the wetting ability of the stitched reinforcements so that the conventional structures are substituted for the stitched sandwich composites effectively.

  • PDF

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.