• Title/Summary/Keyword: 수중환경

Search Result 1,466, Processing Time 0.029 seconds

A Study on the Denoising Method by Multi-threshold for Underwater Transient Noise Measurement (수중 천이소음측정을 위한 다중 임계치 잡음제거기법 연구)

  • 최재용;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.576-584
    • /
    • 2002
  • This paper proposes a new denosing method using wavelet packet, to reject unknown external noise and white gaussian ambient noise for measuring the transient noise which is one of the important elements for ship classification. The previous denosing method applied the same wavelet threshold at each node of multi-single sensors for rejecting white noise is not adequate in the underwater environment existing lots of external noises. The proposed algorithm of this paper applies a modified soft-threshold to each node according to the discriminated threshold so as to reject unknown external noise and white gaussian ambient noise. It is verified by numerical simulation that the SNR is increased more than 25㏈. And the simulation results are confirmed through sea-trial using multi-single sensors.

Performance evaluation of types of sea water heat exchanger for floating architecture (플로팅 건축에서 해수열 이용을 위한 수중 열교환기 모델 개발과 성능 평가)

  • Kim, Byeol;Lee, Chang-Hun;Koo, Jae-Hyeok;Hwang, Kwang-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.287-288
    • /
    • 2013
  • Concerns on the floating architecture development has been increased on the viewpoint of ocean space due to the increases of GDP and environmental issues such as sea level rise. However, basic research on the water heat exchanger for utilizing seawater thermal energy is insufficient. So, The purpose of this research is to develop a sea water heat exchanger model and to evaluate the performance throughout the experiment for seawater heat utilization.

  • PDF

A Development of Improved Recognition Algorithm for Ultrasonic Signal (수중 음향신호 인식성능 향상 알고리듬 개발)

  • Kim Young-Jin;Huh Kyung-Moo;Woo Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.60-66
    • /
    • 2006
  • Underwater ultrasonic communication is critical to explore and development ocean using instrument. Essential to these applications is the reliable teleoperation and telemetering of the unit. But the problem is that the controllability of the instrument and the reliability of submarine communication are decreased, as so various passive noises are generated. In the existing methods, the control informations, received from an observation instrument, are identified used by hardware and repeatedly compared with standard information. However, such a method weakens the efficiency in controllability-centered systems. This study presents an ultrasonic signal detection algorithm that can identify the ultrasonic signal without the influence of disturbances due to underwater environmental changes. Likewise, the logicality of detection algorithm were ascertained by simulation.

Performance Analysis of an OFDM System over an underwater acoustic channel (수중 음향 채널에서 OFDM 시스템의 성능 분석)

  • Kang, Heehoon;Lee, Youngjong;Han, Wanok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.211-216
    • /
    • 2012
  • Such as disaster rescue in deep water, undersea exploration and monitering for environmental pollution, many applications require the acoustic communication for high data rate over underwater acoustic channel. As underwater channel is very complex and is time-varying, In this paper, The proposed OFDM system with synchronization errors and multipath delay spread is analyzed for high data rate and reliability and rubust service over UWA channels.

Propelling and Turning Motions of Fish for Virtual Aquarium (가상 수족관 물고기의 추진과 회전 유영 생성 방법)

  • Han, yoon-seok;Yoon, jae-hong;Kim, eun-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.33-37
    • /
    • 2008
  • The interaction between artificial fish and aquatic surroundings and the fish's realistic locomotion are very important elements to construct virtual aquariums. In general, the artificial fish in virtual aquariums used to be created by 3D modeling tools, and was repeatedly showing the simple and constant form of swimming. This paper will analyze the sorts of biological forms of fish-swimming and the propelling and turning characteristics. Then, we propose a method of the basic swimming and turning of artificial fish to generate various and natural-looking locomotion. It is possible to make a explorable virtual aquarium more immersive by using interactive interfaces together.

  • PDF