• 제목/요약/키워드: 수중폭발충격

검색결과 46건 처리시간 0.022초

선체거더 충격응답의 근사해석 (Approximate Analysis of Shock Response for Ship Hull Girder)

  • 송준태;박병욱;안진우;조윤식
    • 대한조선학회논문집
    • /
    • 제33권2호
    • /
    • pp.75-84
    • /
    • 1996
  • 수중폭발에 의한 선체충격응답의 이론적 해석은 충격파를 전달하는 유체와 구조와의 복잡한 상호작용 문제로 귀착되나, 함정 내충격 설계의 측면에서 주요 관심사가 되는 선체의 충격운동은 폭발의 초기에 발생하므로 충격응답의 해석을 폭발의 초기로만 한정할 경우에는 매우 단순화된 구조동역학적 방법에 의해 충격응답을 근사적으로 산정할 수 있다. 이에 따라, 본 논문에서는 충격파에 의해 가속되는 선체 몰수부 단면에 해당하는 물기둥에 전달되는 운동량을 이상화하고, 이를 이용하여 선체거더의 충격응답을 근사 해석할 수 있는 기법을 제시하였다. 또한 이를 토대로 개발한 전산 프로그램을 이용하여 상자형의 단순모델에 적용하여 본 방법의 실용성을 검증하고 여러 가지의 구조특성 및 폭발 조건에 따른 충격응답을 해석하여 그 특성을 분석하였다.

  • PDF

근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법 (Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion)

  • 박진원
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.125-132
    • /
    • 2019
  • 수중폭발로 인해 발생된 충격파에 노출된 유체(대부분 해수)는 유체장 내 압력과 속력 등의 물리적 변화에 따른 장력을 견딜 수 없으므로 캐비테이션(기포 또는 기공)이 발생하게 되고 이때 발생된 캐비테이션은 수중폭발의 연쇄 과정 중 구조물에 미치는 충격하중의 전달 환경을 변화시킨다. 폭발물과 구조물 간의 거리가 비교적 가까워 선체구조의 국부적 손상에 관심을 가지는 근거리 수중폭발연구에서 관심을 가지는 물리적 현상은 크게 3가지로 초기충격파 그리고 그것과 선체구조와의 상호작용, 국부 캐비테이션, 국부 캐비테이션 폐쇄 후 2차 충격파이다. 본 논문의 관심은 근거리 수중폭발에 따른 국소 캐비테이션이므로 수면과 해저로부터의 반사파는 고려하지 않는다. 유체와 구조에 관한 각각의 지배 방정식을 유도하고 이를 간단한 1차원 무한평판 문제에 적용, 수치적으로 해석하여 엄밀해와 비교해봄으로써 제안된 비연성 해석방법을 검증한다. 비연성 해석방법은 유체-구조 결합 해석방법보다 계산상 효율이 높으며 간단함에도 불구하고 상대적으로 높은 수준의 정확도를 얻을 수 있다는 점에서 유용하다. 본 논문을 통해 수중폭발과 같은 복잡한 물리적 상황에서의 유체-구조 상호작용 현상에 대한 이해와 실질적인 문제에 개념적 이해를 높이는 데 도움이 될 것이다.

이중탄성지지 함정용주기관의 충격, 진동 및 고체음 성능평가 (Performance Evaluation of Shock, Vibration and Structure-borne Noise for Double-resilient Mounting Engine Module)

  • 유광택;박정근;정정훈;김병현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1048-1052
    • /
    • 1996
  • 함정용 주기관은 내충격 및 고체음 저감을 위하여 이중탄성지지시스템으로 설치되고 있다. 이중탄성지 지에 의한 방법은 기뢰(mines)의 비접촉 수중폭발 공격으로부터 충격손상을 방지하며, 또한 수중으로 고체음이 전파되어 피탐되는 가능성을 저감하는데 그 목적이 있다.(중략)

  • PDF

함정의 수중폭발 충격시험을 위한 계측장비 시스템 개발 (Development of Measurement System for the Underwater Explosion Shock Test of Naval Ships)

  • 박일권;조대승;김종철
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.66-74
    • /
    • 2003
  • In non-contact underwater explosion shock test of a real naval ship, measurement of shock loadings and responses should require onboard system to be able to safely trigger an explosive and to simultaneously and successfully measure scores of shock signals in the deteriorated environment. For this purpose, we have developed a shock-hardened measurement system resistible to 170g peak acceleration having 4 msec duration by resiliently mounting general purpose measurement instruments in racks. The system can simultaneously measure and record 200 signals to evaluate shock leadings and responses of the test ship by triggering an explosive and measurement instruments at the same time. We prove the performance of the developed system by introducing the signal acquisition results from of a real ship underwater shock test, firstly performed in Korea.

휘핑계수-수중폭발 가스구체 압력파 크기의 척도 (Whipping factor - a Measure of Damage Potential of an UNDEX Bubble Pulse)

  • 권정일;정정훈;이상갑
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.637-643
    • /
    • 2005
  • A new novel Whipping Factor is proposed as a measure of the ship damage potential due to an underwater explosion bubble pulse. The factor was derived from the relationships among the charge weight, its depth and the fluid acceleration due to pulsating gas bubble. From the whipping response analyses for three uniform Timoshenko beams with similar characteristics of real naval surface ships, we have confirmed the maximum bending moment responses of beams due to whipping are almost same if the applied whipping factor is constant regardless of the charge weights and depths, which could validate the proposed whipping factor.

수중폭발을 이용한 충격신관 작동 계측 (Measurement of the Impact Fuze Phenomena using the Underwater Explosion)

  • 최시홍
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.479-484
    • /
    • 2014
  • In this paper, This study shows the content on the impact fuze test and the measurement using underwater explosion phenomena. The impact fuze has both a delay function and a super quick. Up to now, nothing but the naked eye of the observer has been used to verify performance of the impact fuze. The observer has determined the performance by the shape of the plume created from the explosion phenomenon. However, it is extremely difficult to use that method at a long range. In order to solve the problem, the measurement using the underwater explosion phenomena was tried.

수중폭발에 의한 해중터널의 동적거동 (Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion)

  • 홍관영;이계희;이성로
    • 한국전산구조공학회논문집
    • /
    • 제31권5호
    • /
    • pp.215-226
    • /
    • 2018
  • 본 논문에서는 수중폭발(UE: underwater explosion)에 의한 해중터널(SFT: submerged floating tunnel)의 동적거동을 양해법(explicit)를 이용하는 LS-DYNA에 의한 유한요소해석을 통하여 분석하였다. SFT의 유한요소모델은 원형단면의 강재 라이너에 콘크리트가 채워진 복합재 원형단면으로 고려되었다. 해중터널 시스템의 중앙부 100m 구간은 탄소성재료를 고려한 솔리드(solid)요소로 상세하게 모델링하였으며, 양측 방향으로 각각 1km 구간에 대해서는 탄성재료를 고려하여 빔(beam) 요소로 이상화하여 모델링하였다. 사선계류시스템은 케이블(cable)요소를 적용하였으며, 수중폭발에 의한 동적거동시 수리동적질량의 영향을 고려하기 위하여 원형단면에 대한 추가질량을 고려하였다. 또한 부력과 같은 상시하중을 초기조건으로 고려하기 위하여 동적완화해석(dynamic relaxation analysis)를 수행하였다. UE는 부력비(B/W)와 폭발지점으로부터 거리의 변화에 대해서 고려하였으며, 폭발의 규모는 천안함 합동조사보고서(2010)를 참조하여 TNT 360kg로 결정하였다. 수중폭발 해석결과, 폭발지점으로부터 SFT까지 거리는 관입량, 충격압력의 크기와 반비례 관계에 있고, 부력비(B/W)가 커질수록 계류장력도 커짐을 확인하였다. 그러나 사선계류라인의 계류각 변화는 SFT의 수평거동, 관입량, 계류력, 충격압력과의 연관성을 찾을 수가 없었다.

수중 폭발 충격을 받는 잠수함 액화 산소 탱크의 구조-유체 연성 해석 (Structure-Fluid Interaction Analysis for the Submarine LOX Tank subjected to Underwater Explosion Impact)

  • 신형철;김규성;김재현;전재황
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.419-424
    • /
    • 2004
  • we performed the underwater explosion analysis for the liquefied oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, we reviewed the theory and application of underwater explosion analysis using Structure-Fluid Interaction technique and its finite element modeling scheme. Next, we modeled the explosive and sea water as fluid elements, the LOX tank as structural elements and the interface between two regions as ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. As the analysis result, the shock pressure due explosion propagated into the water region and hit the structure region. The plastic deformation and the equivalent stress highly appeared at the web frame and the shock mount of LOX structure, but these values were acceptable for design criteria.

  • PDF