• Title/Summary/Keyword: 수중음향통신링크

Search Result 5, Processing Time 0.023 seconds

Underwater Acoustic Communication Link Analysis (수중음향통신 링크 해석)

  • Choi, Young-Chol;Byun, Sung-Hoon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1465-1471
    • /
    • 2007
  • The electro-magnetic wave propagates through the air in the terrestrial communications, but the acoustic wave propagates through the seawater in the underwater acoustic communication(UAC). It makes the differences between the UAC link and the well hon air communication links. In this paper, we have studied path loss, absorption and ambient noise of the ocean as a medium for UAC. We have analyzed the absorption coefficient and ambient noise level of the coastal area of South Korea and suggested a strategy for the selection of the frequency band by considering the absorption coefficient and ambient noise level. Also, we present an illustrative example of a link budget for the QPSK UAC system which has carrier frequency 25kHz, bit rate 10kbps, range 1km and BER $10^{-3}$ in the shallow water environment with an ideal AWGN assumption.

A Study on the Path Loss of Underwater Acoustic Channel Based on At-sea Experiment at the South Sea of Korea (남해 실해역 시험 기반 수중음향채널 경로손실에 관한 연구)

  • Kim, Min-Sang;Lee, Tae-Seok;Cho, Yong-Ho;Im, Tae-Ho;Ko, Hak-Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.405-411
    • /
    • 2020
  • Recently, studies on underwater communication, related to the development of underwater resources, disaster monitoring and defense, have been actively carried out. In the design of wireless communication systems, path loss is the most important information to derive a link budget that is required to guarantee communication reliability by calculating received power level for the given communication link. The underwater acoustic channel have different characteristics according to geographical location and relevant environmental factors such as water temperature, depth, wave height, algae, and turbidity. Subsequently, many research institutes aiming to develop underwater acoustic communication systems are researching actively on the underwater acoustic channels in various sea areas. In Korea, however, studies on the path loss of the acoustic channel are still insufficient. Therefore, in this study, the path loss of the acoustic channel are studied based on measurement data of the at-sea experiment conducted at Geohae-do, southern sea of Korea.

수중음향통신을 위한 물리계층 기술

  • Im, Tae-Ho;Go, Hak-Rim
    • Information and Communications Magazine
    • /
    • v.33 no.8
    • /
    • pp.63-70
    • /
    • 2016
  • 본고에서는 최근 활발하게 연구되고 있는 수중 음향통신을 위한 물리계층 기술에 대하여 알아 본다. 수중음향통신은 지상의 전파를 이용한 무선 통신 기술과 달리 음파를 이용한다. 음파는 수중에서 약1500m/s로 매우 저속이고 시간에 따른 다중 경로와 해수면과 해저면에서의 반사가 발생한다. 또한 수온, 염분, 수압, 해류와 해저지형 등에 의해 신호의 왜곡 및 손실이 일어나기 때문에 수중음향통신은 지상에서 전파를 이용한 통신에 비하여 매우 어려운 일이다. 본고에서는 이러한 수중음향채널의 특성을 살펴보고 링크버짓 계산을 한다. 그리고 수중음향통신을 위한 물리계층 변조기법을 살펴본다. 특히 OFDM 변조기법에 대하여 자세히 설명하고 실해역 측정을 통한 수중채널 특성을 기반으로 채널을 모델링하고 OFDM 변조기법을 위한 파라미터 선정 및 성능비교를 하였다.

Design of DUC/DDC for the Underwater Basestation Based on Underwater Acoustic Communication (수중기지국 수중 음향 통신을 위한 DUC/DDC 설계)

  • Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.336-342
    • /
    • 2017
  • Recently, there has been an increasing need for underwater communication systems to monitor ocean environments and prevent marine disasters, as well as to secure ocean resources. Most underwater communication systems adopted acoustic communication with a consideration of attenuation, absorption, and scattering in conductive sea water, and developed fully digital modems based on processors. In this study, a digital up converter (DUC) and a digital down converter (DDC) was developed for an underwater basestation based on underwater acoustic communication systems. Because one of the most important issues in underwater acoustic communication systems is low power consumption due to environmental problems, this study developed a specific hardware module for DUC and DDC. It supported four links of underwater acoustic communication systems and converted the sampling rate and frequency. The systemwas designed and verified using Verilog-HDL in ModelSim environment with the test data generated from baseband layer parts for an underwater base station.

A Cooperative ARQ Scheme for Single-hop and Multi-hop Underwater Acoustic Sensor Networks (단일-홉과 다중-홉 수중 음향 센서 네트워크에서의 효율적인 협력 재전송 기법)

  • Lee, Jae-Won;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.539-548
    • /
    • 2011
  • We propose an efficient cooperative ARQ (Automatic Repeat reQuest) scheme for single-hop and multi-hop underwater acoustic communications, in which cooperative nodes are used to provide more reliable alternative paths for a specific source-to-destination connection. This alternative path has higher channel quality than that of the direct source-destination path. In addition, during a packet-relay through multiple hops, the typical acknowledgement (ACK) signal is replaced with overhearing data packet returned back from the next hop. The usage of overhearing as an ACK improves the system performance. In this paper, we evaluate the proposed scheme by comparing it with a conventional S&W ARQ in terms of throughput efficiency. Computer simulation results show that the proposed cooperative retransmission scheme can significantly improve the throughput by increasing the probability of successful retransmission.