• Title/Summary/Keyword: 수중생활안전

Search Result 7, Processing Time 0.024 seconds

수심에 따른 수중주거시설의 생활안전계획에 관한 연구

  • 박상욱;이한석;강영훈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.91-93
    • /
    • 2021
  • 수중주거시설의 설계에 있어 수중생활안전요건을 확인하고자 이를 예상시설환경 하에서의 생활안전계획 수립, 근로안전계획 수립 및 비상탈출계획 수립 영역으로 구분하고 각각에 대한 위험성을 지수화하여 평가했다. 각각의 생활안전 위험성에 대응한 생활안전매뉴얼, 이동안전매뉴얼 및 비상탈출매뉴얼을 제시하였다.

  • PDF

수중주거공간계획을 위한 수중 Habitat 사례분석 연구

  • 박상욱;김승일;이한석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.310-312
    • /
    • 2022
  • 거주공간은 외부 환경으로부터 거주자를 안전하게 보호하고 사람의 생존을 위한 기본적인 환경을 갖추어야 한다. 또한 사회적 소통과 활동, 그리고 보다 안전하고 쾌적한 생활(업무 등 목적 행위 포함)을 보장할 수 있어야 한다. 수중주거공간은 일반적인 거주환경과 다른 극한 환경이며, 입지에 따른 고립과 공간 활용의 제한이 있다. 따라서 수중주거공간의 거주성 확보를 위해 공간설계기술 및 관련 기준 개발이 필요하다. 수중 habitat 프로그램은 1962년부터 1977년까지 선진국 17개국이 총 65개 수중거주공간을 해저에 설치하고 운영한 것으로서 수중주거공간에 대한 많은 데이터를 축적하였다. 이 연구에서는 수중 habitat 프로그램의 사례를 분석하고, 특성을 도출하여 수중주거공간 계획에서 고려해야 할 요소를 정리하였다.

  • PDF

Effects of Heavy Metals on Amphibian Embryos, Tadpoles, and Adults (중금속이 양서류 배아, 유생 및 성체에 미치는 영향에 관한 소고)

  • Park, Chan Jin;Ahn, Hyo Min;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.287-306
    • /
    • 2012
  • Amphibian population declines globally. Environmental contamination by heavy metals has been suspected to the one of the reason for distinction of amphibian which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guidelines. Here, we reviewed toxicological information about toxicity of heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) on various end-point of amphibian.

Endocrine Disruption by Alkylphenols in Amphibians (알킬페놀류 화합물의 양서류 내분비계장애 효과)

  • Ahn, Hae-Sun;Park, Chan-Jin;Ahn, Hyo-Min;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Amphibian population declines globally. Aquatic contamination by organic pollutants including endocrine disrupters has been suspected to the one of the reason for distinction of amphibia which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guideline for important EDs in aquatic media. Alkylphenols have been widely used in agricultural, industrial, and housekeeping activities, contaminating the aquatic media and evoking endocrine disruption in aquatic animals. In this review, we summarized data concerning the endocrine disruption by alkylphenol organic pollutants on amphibians according to route, concentration, terms, and developmental stage of exposure together with mechanism of endocrine disruption.

Developmental Toxicity of Alkylphenols in Amphibians: A Review (알킬페놀류 화합물의 양서류 발생독성: 종설)

  • Park, Chan-Jin;Ahn, Hae-Sun;Ahn, Hyo-Min;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • Aquatic contamination by organic pollutants has been a suspected reason for rapid decrease of amphibian populations whose embryonic and larval stages are in an aquatic environment. Amphibian embryos can be a useful model to study the ecoctoxicologial impacts of aquatic pollutants. The obtained toxicological data are useful references for the management of aquatic pollutants in public health because amphibia share many developmental events with terrestrial vertebrates including humans. Safety guidelines for the toxicological effects of aquatic contaminants of chemicals identified as hazardous should be addressed at multiple endpoints. Alkylphenols have been widely-used in agricultural, industrial, and household activities; they contaminate and can persist in aquatic environments. Exposure to alkylphenols results in endocrine disruption in aquatic animals. In this review, we summarize the developmental toxicities of alkylphenols in amphibian embryos and larva according to the exposure route, chemical concentration, duration of exposure, and affected developmental stage together with mechanisms of toxicity and typical patterns of developmental abnormality. The merits of amphibian embryos as a toxicity test model for mid- to long-term exposure to aquatic pollutants are discussed proposed.

Water Management Plan for the Nakdong River Using TOC and COD (총유기탄소와 화학적산소요구량을 이용한 낙동강 물관리 방안)

  • Bo Eun Kim;Meea Kang;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • The Nakdong river is both a natural resource crucial to underwater ecosystems and a water source for its basin's residents. Industrial wastewater and domestic sewage must meet the relevant standards for discharged water before they can flow into the river. The correlation between old and new measures of organic matter was examined using water quality data from 50 monitoring locations in the main stream of the Nakdong river. The coefficient of determination (R2) for total organic carbon (TOC), the new measure of organic matter, and chemical oxygen demand (COD), the old measure of organic matter, in the main stream of the Nakdong river was 0.6134, indicating high correlation. Water quality at each location assessed using TOC and COD showed disparities that cannot be ignored: quality appeared higher when evaluating the main stream of the Nakdong river using TOC instead of COD. Therefore, there remains a need to review water quality ratings based on TOC; continuous monitoring of COD is also required. In addition, the cause of the difference should be clearly identified to help assess artificial sources of pollution and natural factors affecting organic matter. Water management of the Nakdong river will then be possible using the water quality rating.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.