DOI QR코드

DOI QR Code

Effects of Heavy Metals on Amphibian Embryos, Tadpoles, and Adults

중금속이 양서류 배아, 유생 및 성체에 미치는 영향에 관한 소고

  • Park, Chan Jin (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Ahn, Hyo Min (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Gye, Myung Chan (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 박찬진 (한양대학교 자연과학대학 생명과학과) ;
  • 안효민 (한양대학교 자연과학대학 생명과학과) ;
  • 계명찬 (한양대학교 자연과학대학 생명과학과)
  • Received : 2012.11.15
  • Accepted : 2012.12.03
  • Published : 2012.12.31

Abstract

Amphibian population declines globally. Environmental contamination by heavy metals has been suspected to the one of the reason for distinction of amphibian which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guidelines. Here, we reviewed toxicological information about toxicity of heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) on various end-point of amphibian.

지구적으로 양서류가 감소하고 있다. 오래전부터 중금속은 양서류 군집 감소의 원인 중 한가지로 지목받고 있다. 수정 후 변태에 이르는 생활사를 수중에서 진행하는 양서류는 수환경 내의 오염물질에 1차적으로 노출되며 독성효과에 대한 감수성이 높아 수환경의 오염에 특히 취약하다. 양서류는 수서생태계의 건강도 지표로서 유용할 뿐 아니라 분자 및 개체수준의 다양한 생체지표를 이용한 다양한 환경오염물질의 독성평가 모델로서도 유용하다. 양서류에서 얻어진 독성자료는 수환경 오염물질의 관리와 안전관리기준으로 사용될 수 있다. 본 논문에서는 기존에 보고된 중금속이 양서류의 다양한 독성종말점에 미치는 영향들에 대해 검토하고 분석하였다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. 고선근, 이두표. 1997. 중금속 이온이 산개구리 난자성숙에 미치는 영향에 관한 연구. 환경생태학회지. 11:310-315.
  2. 김순오, 정영일, 조현구. 2006. 삼산제일∙삼봉 동광산 주변 수계의 중금속 오염도 평가. 한국광물학회지. 19:171-187.
  3. 김윤경, 정해문. 1995. 카드뮴이 양서류 체축 형성에 미치는 독성 효과. 한국독성학회지. 11:37-42.
  4. 윤춘식, 진정효, 정선우. 2003. 과량의 아연에 의한 아프리카 발톱개구리(Xenopus laevis)의 배발생 이상과 독성. 한국육수학회지. 36:83-94.
  5. 이두표, 고선근. 2001. 영산강 수계에서 채집된 황소개구리의 기형 양상 및 체내 중금속 축적. 한국환경생태학회지. 15: 153-158.
  6. 이현구, 이찬희. 1998. 충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염. 대한지하수환경학회지. 5:10-20.
  7. 정구복, 김원일, 이종식, 이재생, 박찬원, 고문환. 2005. 국내 폐금속광산 주변 잔류광미의 중금속 오염특성. 한국환경농학회지. 24:222-231.
  8. Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological Profile for Mercury. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  9. Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Arsenic. Public Health Service, U.S. Department of Health and Human Services, Atlanta, G.A., U.S.A.
  10. Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Lead. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  11. Agency for Toxic Substances and Disease Registry (ATSDR). 2008. Toxicological Profile for Cadmium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  12. Aronzon CM, MT Sandoval, J Herkovits and CS Pérezcoll. 2011. Stage-dependent susceptibility to copper in Rhinella arenarum embryos and larvae. Environ. Toxicol. Chem. 30: 2771-2777. https://doi.org/10.1002/etc.674
  13. Barbin WW and MB Rodgers. 1994. In: Mark JE, Erinan B, Eirich FR, editors. Sci. Technol. Rubber. U.S.A. 7:419-469.
  14. Barry MJ. 2011. Effects of copper, zinc and dragonfly kairomone on growth rate and induced morphology of Bufo arabicus tadpoles. Ecotoxicol. Environ. Saf. 74:918-923. https://doi.org/10.1016/j.ecoenv.2010.12.014
  15. Bazar MA, MJ Quinn Jr, K Mozzachio, JA Bleiler, CR Archer, CT Phillips and MS Johnson. 2009. Toxicological responses of red-backed salamanders (Plethodon cinereus) to soil exposures of copper. Arch. Environ. Contam. Toxicol. 57: 116-122. https://doi.org/10.1007/s00244-008-9232-4
  16. Berzins DW and KJ Bundy. 2002. Bioaccumulation of lead in Xenopus laevis tadpoles from water and sediment. Environ. Int. 28:69-77. https://doi.org/10.1016/S0160-4120(02)00006-5
  17. Birge WJ, AG Westerman and JA Spromsberg. 2000. "Comparative toxicology and risk assessment of amphibians", in Ecotoxicology of Amphibians and Reptiles, DW Sparling, G Linder and CA Bishop, Eds. SETAC, Pensacola, Fla, U.S.A. 727-791pp,
  18. Blanchard J and M Grosell. 2006. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities?. Aquat. Toxicol. 80:131-139. https://doi.org/10.1016/j.aquatox.2006.08.001
  19. Bosisio S, S Fortaner, S Bellinetto, M Farina, R Del Torchio, M Prati, R Gornati, G Bernardini and E Sabbioni. 2009. Developmental toxicity, uptake and distribution of sodium chromate assayed by frog embryo teratogenesis assay-Xenopus (FETAX). Sci. Total Environ. 407:5039-5045. https://doi.org/10.1016/j.scitotenv.2009.05.047
  20. Bradford DF, JL Kramer, SL Gerstenberger, NG Tallent-Halsell and MS Nash. 2012. Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern Sierra Nevada Mountains, California, U.S.A. Arch. Environ. Contam. Toxicol. 62:135-140. https://doi.org/10.1007/s00244-011-9674-y
  21. British Geological Survey, 2012. World Mineral production 2006-2010. British Geological Survey, Keyworth, Nottingham, UK.
  22. British Geological Survey. 2010. World Mineral production 2004-2008. British Geological Survey, Keyworth, Nottingham, UK.
  23. Brown MG, EK Dobbs, JW Snodgrass and DR Ownby. 2012. Ameliorative effects of sodium chloride on acute copper toxicity among Cope's gray tree frog (Hyla chrysoscelis) and green frog (Rana clamitans) embryos. Environ. Toxicol. Chem. 31:836-842. https://doi.org/10.1002/etc.1751
  24. Brown PL and SJ Markich. 2000. Evaluation of the free ion activity model of metal-organism interaction: Extension of the conceptual model. Aquat. Toxicol. 51:177-194. https://doi.org/10.1016/S0166-445X(00)00115-6
  25. Cadle SH and RL Williams. 1980. Environmental degradation of tire wear particles. Rubber Chem. Technol. 53:904-913.
  26. Carrico LC. 1985. Mercury. In: Mineral facts and problems. Washington, DC: U.S. Department of the Interior, Bureau of Mines. 675:499-508.
  27. Chang JS, MB Gu and KW Kim. 2009. Effect of arsenic on p53 mutation and occurrence of teratogenic salamanders: their potential as ecological indicators for arsenic contamination. Chemosphere. 75:948-954. https://doi.org/10.1016/j.chemosphere.2009.01.002
  28. Chen TH, JA Gross and WH Karasov. 2006. Sublethal effects of lead on northern leopard frog (Rana pipiens) tadpoles. Environ. Toxicol. Chem. 25:1383-1389. https://doi.org/10.1897/05-356R.1
  29. Chen TH, JA Gross and WH Karasov. 2007. Adverse effects of chronic copper exposure in larval northern leopard frogs (Rana pipiens). Environ. Toxicol. Chem. 26:1470-1475. https://doi.org/10.1897/06-487R.1
  30. Chen TH, JA Gross and WH Karasov. 2009. Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): bioaccumulation and reduced swimming performance. Ecotoxicology. 18:587-593. https://doi.org/10.1007/s10646-009-0316-3
  31. Choi SG, SG Park, PK Lee and CS Kim. 2004. An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol. 37:1-19.
  32. Christensen JR, CA Bishop, JS Richardson, B Pauli and J Elliott. 2004. Validation of an amphibian sperm inhibition toxicological test method using zinc. Environ. Toxicol. Chem. 23: 2950-2955. https://doi.org/10.1897/03-573.1
  33. Clark AG. 1989. The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp. Biochem. Physiol. 92:419-446.
  34. Cole HS, AL Hitchcock and R Collins. 1992. Mercury warning: The fish you catch may be unsafe to eat - A study of mercury contamination in the United States. Washington, D.C. : Clean Water Fund/Clean Water Action.
  35. Dannis ML. 1974. Rubber dust from the normal wear of tires. Rubber Chem. Technol. 47:1011-1037. https://doi.org/10.5254/1.3540458
  36. Darasch S, DD Mosser, NC Bols and JJ Heikkila. 1988. Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments. Biochem. Cell Biol. 66:862-870. https://doi.org/10.1139/o88-098
  37. Davey JC, AP Nomikos, M Wungjiranirun, JR Sherman, L Ingram, C Batki, JP Lariviere and JW Hamilton. 2008. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor- and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ. Health Perspect. 116:165-172.
  38. Day KE, KE Holtze, SJL Metcalfe, CT Bishop and BJ Dukta. 1993. Toxicity of leachate from automobile tires to aquatic biota. Chemosphere. 27:665-675. https://doi.org/10.1016/0045-6535(93)90100-J
  39. DeForest DK, KV Brix and WJ Adams. 2007. Assessingmetal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 84:236- 246. https://doi.org/10.1016/j.aquatox.2007.02.022
  40. Di Toro DM, HE Allen, HL Bergman, JS Meyer, PR Paquin and RC Santore. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 20:2383-2396. https://doi.org/10.1002/etc.5620201034
  41. Dobrovoljc K, I Falnoga, MT Znidaric, D Mazej, J Scancar and B Bulog. 2012. Cd, Cu, Zn, Se, and Metallothioneins in Two Amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura). Biol. Trace Elem. Res. 2012 Jun 16. [Epub ahead of print]
  42. Drake HJ. 1981. Mercury. In: Mark HF, Othmer DF, Overberger CG et al, Kirk-Othmer encyclopedia of chemical technology. New York, N. Y. : John Wiley and Sons, Inc. 143- 156.
  43. Egaas E, EG Jensen and JU Skaare. 1988. Activities of some microsomal enzymes of the yellow mealworm, Tenebrio molitor (Linne): I. Basal levels and inducibility. Pest. Biochem. Physiol. 30:35-39. https://doi.org/10.1016/0048-3575(88)90057-0
  44. Evans JJ. 1997. Rubber tire leachates in the aquatic environment. Environ. Contam. Toxicol. 151:67-115.
  45. Falchuk KH, M Montorzi and BL Vallee. 1995. Zinc uptake and distribution Xenopus laevis oocytes and embryos. Biochemistry. 19:16524-16531.
  46. Feige U and W van Eden. 1996. Infection, autoimmunity and autoimmune disease. Stress Inducible Cellular Responses 77:359-373.
  47. Fort DJ, RL Rogers, JH Thomas, WA Hopkins and C Schlekat. 2006. Comparative developmental toxicity of nickel to Gastrophryne carolinensis, Bufo terrestris, and Xenopus laevis. Arch. Environ. Contam. Toxicol. 51:703-710. https://doi.org/10.1007/s00244-005-0217-2
  48. Garcia-Mu-noz E, F Guerrero and G Parra. 2009. Effects of copper sulfate on growth, development, and escape behavior in Epidalea calamita embryos and larvae. Arch. Environ. Contam. Toxicol. 56:557-565. https://doi.org/10.1007/s00244-008-9201-y
  49. Gauley J and JJ Heikkila. 2006. Examination of the expression of the heat shock protein gene, hsp110, in Xenopus laevis cultured cells and embryos. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145:225-234. https://doi.org/10.1016/j.cbpa.2006.06.021
  50. Gualtieri M, M Andrioletti, C Vismara, M Milani and M Camatini. 2005. Toxicity of tire debris leachates. Environ. Int. 31: 723-730. https://doi.org/10.1016/j.envint.2005.02.001
  51. Haritos VS, JRJ French and JT Ahokas. 1994. Cytochrome P450 monooxygenase and glutathione S-transferase activity of two Australian termites: Mastotermes darwiniensis and Coptotermes acinaciformis. Insect Biochem. Mol. Biol. 24: 929-935. https://doi.org/10.1016/0965-1748(94)90021-3
  52. Hauptman O, DM Albert, MC Plowman, SM Hopfer, FW Sunderman Jr. 1993. Ocular malformations of Xenopus laevis exposed to nickel during embryogenesis. Ann. Clin. Lab. Sci. 23:397-406.
  53. Herkovits J, CS Perez-Coll and FD Herkovits. 2000. Evaluation of nickel-zinc interactions by means of bioassays with amphibian embryos. Ecotoxicol. Environ. Saf. 45:266-273. https://doi.org/10.1006/eesa.1999.1857
  54. Herkovits J, P Cardellini, C Pavanati and CS Perez-Coll. 1998. Cadmium Uptake and Bioaccumulation in Xenopus laevis Embryos. Ecotoxicol. Environ. Saf. 39:21-26. https://doi.org/10.1006/eesa.1997.1586
  55. Hodgson E. 1983. The significance of cytochrome P-450 in insects. Insect Biochem. 13:237-246. https://doi.org/10.1016/0020-1790(83)90044-6
  56. Hopfer SM, MC Plowman, KR Sweeney, JA Bantle and FW Sunderman Jr. 1991. Teratogenicity of $Ni^{2+}$ in Xenopus laevis, assayed by the FETAX procedure. Biol. Trace Elem. Res. 29:203-216. https://doi.org/10.1007/BF03032678
  57. Huang CC, Y Xu, JT Briggler, M McKee, P Nam and YW Huang. 2010. Heavy metals, hematology, plasma chemistry, and parasites in adult hellbenders (Cryptobranchus alleganiensis). Environ. Toxicol. Chem. 29:1132-1137.
  58. IPCS (International Programme on Chemical Safety). 1991. Nickel. In Environmental Health Criteria. 108pp.
  59. Irving EC, RB Lowell, JM Culp, K Liber, Q Xie and R Kerrich. 2008. Effects of arsenic speciation and low dissolved oxygen condition on the toxicity of arsenic to a lotic mayfly. Environ. Toxicol. Chem. 27:583-590. https://doi.org/10.1897/06-617.1
  60. Iscan M, T Coban, BC Eke and M Iscan. 1995. Differential responses of hepatic monooxygenases and glutathione S-transferases of mice to a combination of cadmium and nickel. Comp. Biochem. Physiol. 111:61-68. https://doi.org/10.1016/0305-0491(94)00226-K
  61. Ishizaki A, M Fukushima and M Sakamoto. 1971. Contents of cadmium and zinc in organs of Itailtal disease patients and residents of Hokuriku District. Jap. J. Hygiene. 268pp.
  62. Ithakissios DS, T Ghafghazi, JH Mennear and WV Kessler. 1975. Effect of multipledoses of cadmium on glucose meta- bolism and insulin secretion in the rat. Toxicol. Appl. Pharmacol. 31:143-149. https://doi.org/10.1016/0041-008X(75)90062-9
  63. James SM, EE Little and RD Semlitsch. 2005. Metamorphosis of two amphibian species after chronic cadmium exposure in outdoor aquatic mesocosms. Environ. Toxicol. Chem. 24:1994-2001. https://doi.org/10.1897/04-568R.1
  64. Janssens de BL, A Gerhardt and M Maldonado. 2004. Behavioral bioassay with a local tadpole (Pleuroderma cinereum) from River Rocha, Bolivia, in river water spiked with chromium6+. Bull. Environ. Contam. Toxicol. 72:422-428. https://doi.org/10.1007/s00128-003-8922-x
  65. Jelaso AM, D Mackay and CF Ide. 1997. Methylmercury decreases IL-1beta immunoreactivity in the nervous system of the developing frog Xenopus laevis, Neurotoxicology. 18: 841-850.
  66. Jofre MB, RI Antón and CV Enrique. 2012. Lead and cadmium accumulation in anuran amphibians of a permanent water body in arid Midwestern Argentina. Environ. Sci. Pollut. Res. 19:2889-2897. https://doi.org/10.1007/s11356-012-0795-2
  67. Jung MC, MY Jung and YW Choi. 2004. Environmental assessment of heavy metals around abandoned metalliferous mine in Korea. Econ. Environ. Geol. 37:21-33.
  68. Kabir MI, H Lee, G Kim and T Jun. 2010. Monitoring and assessing heavy metals in topsoils as potential diffuse pollutants in the Pyeongchang River Basin, Korea. Water Sci. Technol. 12:3156-3162.
  69. Kang JH, SW Lee, KH Cho and SJ Ki. 2010. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin. Water Res. 44:4143-4157. https://doi.org/10.1016/j.watres.2010.05.009
  70. King M and V Ramachandran. 1995. Lead, Kirk-Othmer encyclopedia of chemical technology. 4:69-113.
  71. Komarnicki GJ. 2000. Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemoshere. 41:1593-1602. https://doi.org/10.1016/S0045-6535(00)00018-7
  72. Kostaropoulos I, D Kalmanti, B Theodoropoulou and NS Loumbourdis. 2005. Effects of exposure to a mixture of cadmium and chromium on detoxification enzyme (GST, P450-MO) activities in the frog Rana ridibunda. Ecotoxicology. 14:439- 447. https://doi.org/10.1007/s10646-004-1349-2
  73. Lefcort H, RA Meguire, LH Wilson and WF Ettinger. 1998. Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles. Arch. Environ. Contam. Toxicol. 35: 447-456. https://doi.org/10.1007/s002449900401
  74. Linzey D, J Burroughs, L Hudson, M Marini, J Robertson, J Bacon, M Nagarkatti and P Nagarkatti. 2003. Role of environmental pollutants on immune functions, parasitic infections and limb malformations in marine toads and whistling frogs from Bermuda. Int. J. Environ. Health Res. 13:125-148. https://doi.org/10.1080/0960312031000098053
  75. Lombardi JV, TR Perpetuo, CM Ferreira, JG Machado-Neto and HL Marques. 2002. Acute toxicity of the fungicide copper oxychloride to tadpoles of the bullfrog Rana catesbeiana. Bull. Environ. Contam. Toxicol. 69:415-420. https://doi.org/10.1007/s00128-002-0078-6
  76. Lorscheider FL, MJ Vimy and AO Summers. 1995. Mercury exposure from "silver" tooth fillings: Emerging evidence questions a traditional dental paradigm. FASEB J. 9:504- 508. https://doi.org/10.1096/fasebj.9.7.7737458
  77. Loumbourdis NS. 1998. Heavy-metal concentration in the frog Rana ridibunda from a small river of Macedonia, Northern Greece. Environ. Int. 24:427-431. https://doi.org/10.1016/S0160-4120(98)00021-X
  78. Maeda S. 1994. Biotransformation of arsenic in the freshwater environment. In: Nriagu JO (ed) Arsenic in the environment part I: cycling and characterization. Wiley, New York, NY, U.S.A. 155-187.
  79. Mannervik B. 1985. Isoenzymes of glutathione transferase. Adv. Enzymol. Mol. Biol. 57:357-417.
  80. Martini F, JV Tarazona and MV Pablos. 2012. Are fish and standardized FETAX assays protective enough for amphibians? A case study on Xenopus laevis larvae assay with biologically active substances present in livestock wastes. Sci. World J. doi: 10.1100/2012/605804.
  81. Matthew AB, JQ Michael Jr, M Kristie, AB John, RA Christine, TP Carlton and SJ Mark. 2010. Toxicological Responses of Red-Backed Salamander (Plethodon cinereus) Exposed to Aged and Amended Soils Containing Lead. Arch. Environ. Contam. Toxicol. 58:1040-1047. https://doi.org/10.1007/s00244-010-9471-z
  82. Mendelson JR 3rd, ED Brodie Jr, JH Malone, ME Acevedo, MA Baker, NJ Smatresk and JA Campbell. 2004. Factors associated with the catastrophic decline of a cloudforest frog fauna in Guatemala. Rev. Biol. Trop. 52:991-1000.
  83. Merck. 1989. Merck index: an encyclopedia of chemicals, drugs, and biologicals, Budavari S, Rahway NJ: Merck & Co. 11pp.
  84. Morimoto RI 1993. Cells in stress: transcriptional activation of heat shock genes. Science. 259:1409-1410. https://doi.org/10.1126/science.8451637
  85. Morrow H. 2001. Cadmium and cadmium alloys. In: Kirk-Othmer encyclopedia of chemical technology, John Wiley & Sons, Inc. 471-507.
  86. Mustafa MG and CE Cross. 1971. Pulmonary alveolar macrophage. Oxidative metabolism of isolated cells and mitochondria and effect of cadmium ion on electron- and energytransfer reactions. Biochem. 10:4176-4185. https://doi.org/10.1021/bi00799a004
  87. Natale GS, LL Ammassari, NG Basso and AE Ronco. 2006. Acute and chronic effects of Cr (VI) on Hypsiboas pulchellus embryos and tadpoles. Dis. Aquat. Organ. 72:261-267. https://doi.org/10.3354/dao072261
  88. Nelson SM, G Mueller and DC Hemphill. 1994. Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals. Bull. Environ. Contam. Toxicol. 52:574-581.
  89. Nieuwkoop PD and J Faber. 1994. Normal Table of Xenopus laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis. London: Garland Publishing, Inc.
  90. Niyogi S and CM Wood. 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 38:6177-6192. https://doi.org/10.1021/es0496524
  91. Pagenkopf GK. 1983. Gill surface interaction model for tracemetal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 17:342-347. https://doi.org/10.1021/es00112a007
  92. Papachristou P, KJ Haralambous, N Loizidou and N Spyrellis. 1993. Studies on the nickel removal from aqueous solutions. J. Environ. Sci. Health A. 28:135-142.
  93. Perez-Coll CS, AA Sztrum and J Herkovits. 2008. Nickel tissue residue as a biomarker of sub-toxic exposure and susceptibility in amphibian embryos. Chemosphere. 74:78-83. https://doi.org/10.1016/j.chemosphere.2008.09.023
  94. Prati M, R Gornati, P Boracchi, E Biganzoli, S Fortaner, R Pietra, E Sabbioni and G Bernardini. 2002. A comparative study of the toxicity of mercury dichloride and methylmercury, assayed by the Frog Embryo Teratogenesis Assay- Xenopus (FETAX). Altern. Lab. Anim. 30:23-32.
  95. Puccini P, S Menicagli, V Longo, A Santucci and PG Gervasi. 1992. Purification and characterization of an acetoneinducible cytochrome P-450 from hamster liver microsomes. Biochem. J. 287:863-870. https://doi.org/10.1042/bj2870863
  96. Ranatunge RAAR, MR Wijesinghe, WD Ratnasooriya, HASG Dharmarathne and RD Wijesekera. 2012. Cadmium-Induced Toxicity on Larvae of the Common Asian Toad Duttaphrynus Melanostictus (Schneider 1799): Evidence from Empirical Trials. Bull. Environ. Contam. Toxicol. 89:143-146. https://doi.org/10.1007/s00128-012-0635-6
  97. Sharma B and R Patino. 2008. Exposure of Xenopus laevis Tadpoles to Cadmium Reveals Concentration-dependent Bimodal Effects on Growth and Monotonic Effects on Development and Thyroid Gland Activity. Toxicol. Sci. 105:51-58. https://doi.org/10.1093/toxsci/kfn119
  98. Shea EE. 1996. Lead regulation handbook. Rockville, MD: Government Institutes.
  99. Sidle WC. 1993. Naturally occuring mercury contamination in a pristine environment. Environ. Geology. 21:42-50. https://doi.org/10.1007/BF00775049
  100. Sivakumar S and CV Subbhuraam. 2005. Toxicity of chromium (III) and chromium (VI) to the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 62:93-98. https://doi.org/10.1016/j.ecoenv.2004.08.006
  101. Sobotka JM and RG Rahwan. 1995. Teratogenesis induced by short- and long-term exposure of Xenopus laevis progeny to lead. J. Toxicol. Environ. Health. 44:469-484. https://doi.org/10.1080/15287399509531975
  102. Spears JW and EE Hatfield. 1977. Role of nickel in animal nutrition. Feed-stuffs. 49:24-28.
  103. Suhendrayatna, A Ohki, T Nakajima and S Maeda. 2002. Studies on the accumulation and transformation of arsenic in freshwater organisms I: accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere. 46:319-324. https://doi.org/10.1016/S0045-6535(01)00084-4
  104. Sunderman FW Jr, S Grbac-Ivankovic, MR Plowman and M Davis. 1996. Zn (2+)-induction of metallothionein in myotomal cell nuclei during somitogenesis of Xenopus laevis. Mol. Reprod. Dev. 43:444-451. https://doi.org/10.1002/(SICI)1098-2795(199604)43:4<444::AID-MRD6>3.0.CO;2-P
  105. Sura P, BA Patrycja, F Elzbieta and W Maria. 2011. Effect of mercury ions on cysteine metabolism in Xenopus laevis tissues. Comp. Biochem. Physiol. 154:180-186.
  106. Sutherland CA and EF Milner. 1990. Lead, Ullmann's encyclopedia of industrial chemistry. 5:193-236.
  107. Sztrum AA, JL D'Eramo and J Herkovits. 2011. Nickel toxicity in embryos and larvae of the South American toad: effects on cell differentiation, morphogenesis, and oxygen consumption. Environ. Toxicol. Chem. 30:1146-1152. https://doi.org/10.1002/etc.484
  108. Tjalve H and A Frank. 1984. Tapetum lucidum in the pigmented and albino ferret. Exp. Eye Res. 38: 341-351. https://doi.org/10.1016/0014-4835(84)90189-1
  109. Trivedi B, DK Saxena, RC Murthy and SV Chandra. 1989. Embryotoxicity and fetotoxicity of orally administrated hexavalent chromium in mice. Reprod. Toxicol. 3:275-278. https://doi.org/10.1016/0890-6238(89)90022-1
  110. United Nations. 1997. Glossary of Environment Statistics, Studies in Methods, Series F, No. 67. New York. United Nations.
  111. USGS. 2008. Cadmium. Mineral commodity summaries. U.S. Geological Survey.
  112. Vallee BL and DD Ulmer. 1972. Biochemical effects of mercury, cadmium, and lead. An. Rev. Biochem. 41:91-128. https://doi.org/10.1146/annurev.bi.41.070172.000515
  113. Wang MZ and Jia XY. 2009. Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata. Ecotoxicology. 18:94-99. https://doi.org/10.1007/s10646-008-0262-5
  114. Wellinghausen N and L Rink. 1998. The significance of zinc for leukocyte biology. J. Leukoc. Biol. 64:571-577. https://doi.org/10.1002/jlb.64.5.571
  115. WHO. 1998. Chromium. Environmental health criteria. World Health Organisation. Geneva, Switzerland: IPCS Pubblications. 61pp.
  116. Williams N. 2007. Protection fails to stem amphibian decline. Curr. Biol. 17:339-340. https://doi.org/10.1016/j.cub.2007.04.041
  117. Xia K, H Zhao, M Wu and H Wang. 2012. Chronic toxicity of copper on embryo development in Chinese toad, Bufo gargarizans. Chemosphere. 87:1395-1402. https://doi.org/10.1016/j.chemosphere.2012.02.047
  118. Zhang Y, D Huang, D Zhao, J Long, G Song and A Li. 2007. Long-term toxicity effects of cadmium and lead on Bufo raddei tadpoles. Bull. Environ. Contam. Toxicol. 79:178- 183. https://doi.org/10.1007/s00128-007-9152-4