• Title/Summary/Keyword: 수중불분리성

Search Result 67, Processing Time 0.022 seconds

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

A Study for In-situ Application of High Strength Antiwashout Underwater Concrete (고장도용 수중불분리성 콘크리트의 현장적용을 위한 연구)

  • 문한영;송용규;이승훈;정재홍
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.336-345
    • /
    • 2001
  • The construction of underwater structures has been increased, but underwater concrete hassome problems of quality deterioration and contamination around in-situ of civil and architecture; therefore, new materials and methods for them are demanded. In this paper in-situ application of underwater antiwashout concrete which is manufactured for trio purpose of not only decreasing suspended solids and the heat of hydration but also increasing long term strength was studied. In the case of mock-up test(Ⅰ), when underwater antiwashout concrete, whose slump flow was 58 cm, was placed in the mock-up test at a speed of 24 ㎥/hr, it took about a minute to flow to the side wall, and the surface was maintained at horizontal level. In this case, compressive strength of the core specimens in each section was higher than the standard design compressive strength of 240 kgf/㎠. In the case of mock-up test(II), pH value and suspended solids of high strength underwater antiwashout concrete were 10.0∼11.0 and 51 mg/ℓ at 30 minutes later, initial and final setting time were about 30, 37 hr, and the slump flow of that was 53$\pm$2 cm. In the placement at a speed of 27 ㎥/hr, there was no large difference in flowing velocity, with or without reinforcement and flowing slope was maintained at horizontal level. In this case, compressive strength and elastic modulus of the core specimens somewhat decreased as flowing distance was far : however, those of central area showed the highest value.

The Effect of Antiwashout Admixture and Corrosion Inhibitor on the Seawater Concrete (해수 콘크리트에 대한 수중불분리 혼화제와 방청제의 효과에 관한 연구)

  • Kang, Hyun-Ju;Lee, Kyung-Hee;Cho, In-Sung;Han, Sub-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.970-976
    • /
    • 2002
  • In this paper, the slump flow of the concrete, suspension, pH, corrosion effect, bleeding and the characteristics of coompressive strength were analyzed using antiwashout underwater admixture and antiwashout underwater agent+corrosion inhibitor mixed admixtures(1type). The results showed that there were no rare difference in physical properties but in the results of rapid corrosion tests there were lots of corrosion inhibitor ratio differences between concrete using only antiwashout underwater admixture and the corrosion inhibitor mixed(1type). In the case of only antiwashout underwater admixture 5.4%, the case corrosion inhibitor mixed(1type) 0.07%, the Antiseawater of the concrete which uses the Corrosion Inibitor Mixed(1type) appeared highly.

Anti-washout Grouts for Underwater Sealing of Karst Cavities and Construction Research Tendencies (수중 불분리성 그라우트 개발 기술 동향)

  • Baluch, Khaqan;Kim, Jung-Gyu;Kim, Jong-Gwan;Yu, Ji-Yun;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.46-52
    • /
    • 2020
  • Although anti-washout grouts are used extensively in underwater targets, major constraints continue to be associated with their use. These include poor bonding strength, poor pumpability, and loss of high strength in everyday engineering applications. In this study, based on the literature pertaining to self-compacted, non-dispersive, anti-washout grouts, a review of research trends in anti-washout grouts for underwater construction and sealing of karst cavities was carried out in order to determine the problems faced in this field. Grouts used under water suffer a loss of strength and bonding strength in comparison to grouts cast in air. Researchers are designing high-viscosity grouts to overcome the inrush of water and seal karst cavities; however, in doing so, they have inadvertently caused serious problems pertaining to the pumpability of these grouts and concretes in deep target locations. Thus, the majority of the anti-washout grouts and concretes that have been developed are not applicable to deep target environments, instead being suitable for only near-surface targets.

Experimental Study on Low-pH, Anti-washing Grouts Incorporating Gypsum for Reinforcement of Underwater Cavities (수중 공동보강용 석고 활용 저 pH형 수중불분리 그라우트에 대한 실험적 연구)

  • Kim, Young-sang;Baek, Jeong Jin;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.30-37
    • /
    • 2018
  • A series of experiment was conducted to evaluate basic performances of low-pH, anti-washing grouts incorporating gypsum which applied for reinforcing underwater cavities in limestone- grounds. Various types of mix proportions were designed and the fluidity, strength and environmental impact of these mixtures were evaluated. The flowability was evaluated under two conditions, i.e., flows without and with pressing, respectively. Strength was measured for the hardened mixtures fabricated under conditions of air and water injections. The environmental impacts including the pH of the suspension and the suspended solids concentration for the mixtures were evaluated. The low pH of fresh mixture suspension, below than 10, was achieved by incorporation of gypsum. The mix proportions of cement-quartz powder-gypsum binders and chemical agents resulted in mortar natural flow 7-10 cm and uniaxial compressive strength 4 MPa were derived.

Effect of Anti-washout Admixture Implementation on Backfill Aggregates on Underwater Structures (수중 구조물 골재 속채움 시 수중 불분리성 혼화제의 적용 효과)

  • Kim, Ukgie;Choi, Changho;Park, Bonggeun;Li, Zhuang;Cho, Samdeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.59-67
    • /
    • 2014
  • With increasing underwater structure construction, there is high interest in offshore foundation and underwater grout and various study has been done in this area. For grout materials constructed underwater, it may be washed away by water or easily disturbed and material separation phenomenon during curing period always happens. As a result, it is difficult to ensure construction quality and this has a significant influence on the design strength of structure. In this study, to understand application effects of anti-washout admixture for the preplaced construction method, where grout is injected in monopile after filled with aggregates, laboratory tests on bleeding and compressive strength of anti-washout admixture were performed under various test conditions varying size of aggregate, water and cement ratio and admixture, and test results were compared and evaluated.

Statistical Evaluation of Mix proportion Factor of Antiwashout Underwater Concrete (통계적 분석에 의한 수중불분리성콘크리트 배합인자의 특성)

  • 원종필;임경하;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.66-76
    • /
    • 2001
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aims of this research is statistically evaluated to mix proportion factor of antiwashout underwater concrete. Experiment was performed to analyze the influence variables(cement, water, and antiwashout admixture) on fundamental characteristics of antiwashout underwater concrete. The influence variables can be considered for use in a wide range of underwater work where their have statistically significant effect on the characteristics(fluidity, filling ability, resistance to washout, etc.) of antiwashout underwater concrete.

  • PDF

An Experimental Study on the Setting of Antiwashout Underwater concrete Using Fly Ash (플라이애쉬를 사용한 수중불분리성 콘크리트의 응결에 관한 실험적 연구)

  • 권중현;김봉익
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.120-125
    • /
    • 2001
  • This paper describes the effect of fly ash replacement on the setting time of antiwashout underwater concrete, where cement was replaced by 0% to 50%. Experimental work was performed on the condition of sea water and in air to find out the characteristics of setting time between the concretes that were cast in air and cast in 15$^{\circ}C$ of sea water. The experimental results show that the setting time of underwater concrete with 50% replacement was delayed about 10 hours than normal concrete. And it can be concluded that, at the case of underseawater concrete addicted with fly ash, the delayed final setting times are shown as the function Tf=0.069F+7.69, where Tf is the delayed final setting time and F is quantity of fly ash, respectively. These results confirm that the setting time underseawater concrete could be prolonged.

  • PDF

Material Properties of Ultra Rapid Hardening Mortar for Repairing Sewage Treatment Concrete Pipes (콘크리트 하수관거 보수용 초속경 수중불분리 모르타르의 재료적 특성)

  • Lee, Byungjae;Lee, Sunmok;Bang, Jin-wook;Kim, Yun-yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Among the sewage pipes installed in Korea, the length of concrete pipes exceeding 20 years is 66,334 km (42.5%). Deteriorated concrete sewer pipes need to be repaired due to the leakage of internal sewage, which causes problems such as sink holes by expanding the cavity around the pipeline. In this study, we tried to apply anti-washout underwater mortar with ultra rapid hardening cement and segregation reducing agent to sewage pipe repair. As a result of the setting time test, the final set time was delayed by up to 172% by incorporating segregation reducing agent. In the test for measuring the degree of mortar segregation in water, it was measured at pH 12 or less under all mixing conditions. In addition, the suspension amount was measured to be 50 mg / l or less to satisfy the KCI-AD102 standard by incorporating a segregation reducing agent. In terms of the average value of mortar compressive strength, by incorporating segregation reducing agent, the strength of the specimens produced in air was more than 80% of that of the specimens produced in water. Conversely, the bond strengths of the specimens produced in water were measured to be higher than those of the specimens produced in air. Water resistance was evaluated by measuring water absorption and water permeability. Water absorption and water permeability were reduced by 42.6% and 36.6%, respectively, by mixing segregation reducing agent.

The Strength and Environmental Friendly Characteristics of Non-chemical Accelerating Shotcrete (비약액계 급결성 숏크리트재의 강도특성과 친환경성)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • The shotcrete is a NATM technique as a major tunnel support for ground stability after tunnel excavation. Instead of a general concrete lining method, it is a trend for curtail of construction periods and reduction of construction expenses that required to use of the permanent shotcrete lining. This high-strength shotcrete is required to use as a permanent shotcrete lining. This brought out the solution of environmental pollution and harmfulness to human. Accordingly, in this study specimens for strength measurement were made to develop shotcrete possible to develop materials in early with cement mineral accelerator as NATM method construction. It was compared with existing shotcrete material, unconfined compression test, flexural strength test, antiwashout underwater test were experimented. The fish poison test was experimented to evaluate an influence of environment. As a results of the test, unconfined compressive strength and flexural strength were equivalent with 28-curing day strength of existing material. An antiwashout of research subject material was revealed excellently in antiwashout Underwater test. As a results of the fish poison, an evaluation research subject material was founded more environmentally friendly than existing shotcrete.

  • PDF