• Title/Summary/Keyword: 수조류

Search Result 127, Processing Time 0.021 seconds

Electrophoretic Patterns of Sarcoplasmic Proteins in Mid-West Korean Sea Fishes by Thin Layer Polyacrylamide Gel Isoelectrofocusing (등전점 전기영동에 의한 서해산 해산어의 근형단백질의 전기영동에 관한 연구)

  • 김종배;최선남;이근우;정용현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.455-460
    • /
    • 1991
  • In order to identify hard distinct 12 fish species(shiba shrimp Metapenaeus joyneri, fleshy shrimp Penaeus orientalis, ridgetail prawn Palaemon carinicauda, yellow croaker Pseudosciaena manchurica, croaker Niber albiflora, Colichthyes fragilis, brown sole Limanda herzensteini, frog flounder Pleuronichthys cornutrs, Areliscus rhomaleus, stone flounder Kareius bicoloratus, harvest fish Pampus argenteus, flag fish Goniistius zonatus) by seeing with naked eye in Kunsan coastal area, sarcoplasmic protein in the supernatant was used for isoelectric focusing. For getting supernatant, fish muscle tissue was blended with two times deionized water and centrifuged (at $4^{\circ}C$, 12,000rpm for 15min). Isoelectric focusing of sarcoploasmic protein carried out on a LKB Multiphor II using polyacrylamide gel plate (2mm thickness, pH $3.5~10^{\circ}C$, pH 5~8 gradient, at $10^{\circ}C$ for 1.5, 3 hours). In case of uncertain protein pattern, pH gradient was modified to narrow pH gradiet, and excuted 2-D electrophoresis using conventional polyacrylamide gel electrophoresis. Most of fishes except yellow croaker and Collichthyes fragilis were distingushed by isoelectric focusing. The protein maps of 2-D electrophoresis for analyzing two protein bands at aimilar positions(pH 5, 6) between the two fish species showed the diffeences of the estimated molecular weights, 11,700(pH5.0) and 87,000(pH6.0)

  • PDF

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Age Variation in Extractive Nitrogenous Constituents of the Cultured Ascidian, Halocynthia roretzi Muscle (양식산 우렁쉥이, Halocynthia roretzi 함질소 엑스성분의 연령차)

  • PARK Choon-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.69-79
    • /
    • 1992
  • The muscle extracts of the ascidian, Halocynthia roretzi cultured for two and three years old on the southern coast near Chungmu and the eastern coast near Pohang of Korea, were analyzed for extractive nitrogen (EN), free amino acids (FAA), combined amino acids (CAA), nucleotides and related compounds (NRC), quaternary ammonium bases and guanidino compounds using specimens collected in February 1989 and in April 1989, and compared for those contents with each other. As for the amount of EN, no remarkable difference was found between two- and three-year-old samples collected at St. 1 in the spring and winter seasons, while at St. 2 in the spring season the two-year-old sample was distinctly lower than the three-year-old one. Taurine, proline, glutamic acid, glycine and alanine were the major FAA in every sample. The amount of taurine, the most prominent FAA, was higher in three-year-old sample than in two-year-old one regardless of sampling station and season. Most of the other major FAA showed a similar tendency to EN at both sampling stations in both seasons. Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine 5'-monophosphate (IMP), inosine (Ino) and hypoxanthine (Hyp) were detected in all the samples and ATP, ADP and AMP were the major ingredients. The amounts of total NRC were in parallel with those of EN and total FAA. As for the contents of betaines, two- and three-year-old samples collected in the winter season exhibited a great discrepancy each other, the former being clearly lower than the latter, but no remarkable difference was observed between two samples of two groups in the spring season. In proximate composition of the muscles, the two-year-old sample was considerably higher in moisture content and lower in protein and glycogen contents than the three-year-old one at St. 2 in the spring season. The large discrepancies observed between two- and three-year-old samples from St. 2 seems to be attributable to the difference in size of samples rather than to the difference in age.

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF

Seedling Production of Rabbitfish, Siganus canaliculatus (흰점독가시치, Siganus canaliculatus의 종묘생산)

  • Hwang, Hyung-Kyu;Lee, Jung-Uie;Rho, Sum;Yang, Sang-Geun;Kim, Seong-Cheol;Kim, Kyong-Min
    • Journal of Aquaculture
    • /
    • v.13 no.4
    • /
    • pp.277-284
    • /
    • 2000
  • Rabbitfish hatchlings were given a mixed food of rotifers (Brachionus rotundiformis) and trochophore larvae of oyster. Only the oyster-trochophore larvae were found in the gut of 62-h old fish larvae. The fish larvae, fed on rotifer and ciliate alone did not survive. However, their survival increased to 3.3 % on the 10th day after hatching, when trochophore was supplemented. Corresponding with the accelerated growth, the number of rotifers consumed increased from 11 in a 5-day old fish to 165 in a IS-day old fish. In a field ecosystem containing live diatom, Nannochloropsis oculata, rotifers and copepods, fish larvae were shocked and the oyster's trochophore larvae were fed from 2 to 7 days after hatching. A total of 76,000 seedling were produced after 50 days of hatching with 12.7 % survival. Mean total length and body weight were 65.6 mm and 3.4 g, respectively. Growth of body length (BL), body height (BH), body weight (BW) and head length (HL) as a function of the total length (TL) showed regressional relationships as follows; BL=0.8565 TL+0.0852 ($t^2$=0.9996); BH=0.3207 TL - 0.5052 (($t^2$=0.9641) BW=0.0652 TL2.3508 (($t^2$=0.9925); HL=0.2595 TL - 0.1898 (($t^2$=0.9901)

  • PDF

Effects of BCG on Gastric Chief Cells of the Mouse Implanted with Ehrlich Carcinoma Cells (BCG가 Ehrlich 암세포를 이식한 생쥐 위점막 으뜸세포의 미세구조에 미치는 영향)

  • Ryoo, In-Sang;Ahn, E-Tay;Park, Kyung-Ho;Park, Dae-Kyoon;Kim, Myeong-Soo;Ko, Jeong-Sik
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.153-163
    • /
    • 2005
  • This experiment was performed to evaluate the morphological responses of the gastric chief cells of the mouse, inoculated with Ehrlich carcinoma cells in the inguinal area, following administration of BCG (Bacillus Calmette-Guerin). Healthy adult ICR mice weighing 25 gm each were divided into normal and experimental groups (experimental control group and BCG treated group). In the experimental groups, each mouse was inoculated with $1x10^7$ Ehrlich carcinoma cells subcutaneously in the inguinal area. From next day after inoculations, 0.2 mL of saline or BCG (0.5 mL/25 g B.W.: $0.03{\times}10^8{\sim}0.32{\times}10^8$ CFU) were injected subcutaneously to the animals every other day, respectively. The day following the last injection, each mouse was sacrificed. Pieces of the tissue were taken from the stomach, prefixed with 2.5% glutaraldehyde-1.5% paraformaldehyde solution, followed by post-fixation with 1% osmium tetroxide solution. The ultrathin sections were stained with uranyl acetate and lead citrate. The size of zymogen granule and the size of the mitochondrion of the gastric chief cells were observed and calculated. In the BCG treated group, most chief cells did not show any difference in ultrastructure, except that myelin figures were more frequently observed, in comparison with that of nornmal control group. The size of zymogen granule in the gastric chief cells of normal control, experimental control and BCG-treated groups were $0.98({\pm}0.108){\mu}m,\;1.05({\pm}0.092){\mu}m\;and\;0.93({\pm}0.053){\mu}m$, respectively. And the mitochondrial size of the gastric chief cells of normal control, experimental control and BCG-treated groups were $0.80({\pm}0.130){\mu}m,\;0.83({\pm}0.143){\mu}m\;and\;0.72({\pm}0.078){\mu}m$, respectively. From the above results, it was concluded that BCG may slightly suppress function of the gastric chief cells.

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF