• Title/Summary/Keyword: 수정체 차폐

Search Result 26, Processing Time 0.023 seconds

A Comparative Study on the Lens Dose According to the Change of Shielding Material Used in Brain Computed Tomography (Brain CT에서 차폐 재료 변화에 따른 수정체 선량 비교 연구)

  • Hwang, Incheol;Shin, Woonjae;Gang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • The cases of radiographic inspection for medical diagnosis in Korea have been continuously increasing year after year, which pays particularly more attention to CT which occupies over the half of medical radiation exposure. To find an effective alternative for reducing radiation exposure, the researchers conducted comparative experiments using some shields made of bismuth, aluminum 6mm, and silicone 22mm. These shielding materials have been used to reduce the entrance surface dose (ESD) on lenses, maintaining the CT number, noise, and uniformity in brain CT scanning which forms the largest part in CT scanning these days. These experiments showed that the doses in the spiral scan parallel to IOML and the conventional scan in Bismuth were 26.41% and 17.52%, respectively; in Aluminum 18.24% and 9.39%; in Silicone 19.47% and 14.39% lower than compared with those in the cases without any shields. In the items of the CT number, noise, and uniformity, the bismuth shield satisfied exceedingly the standards of the phantom image test while aluminum and silicone were within. To keep the graphic quality and get good shielding effect, we recommend the silicone shield which can be manufactured and purchased with ease.

The Evaluation of Eye Dose and Image Quality According to The New Tube Current Modulation and Shielding Techniques in Brain CT (두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가)

  • Kwon, Soonmu;Kim, Jungsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.279-285
    • /
    • 2015
  • The eye of human is a radiation sensitive organ and this organ should be shielded from radiation exposure during brain CT procedures. In the brain CT procedures, bismuth protector using to reduce the radiation exposure dose for eye. But protecting the bismuth always accompanies problem of the image quality reduction including artifact. This study aim is the eye radiation exposure dose and image quality evaluation of the new tube current modulation such as new organ based-tube current modulation, longitudinal-TCM, angular-TCM between shielding scan technique using bismuth and lead glasses. As a result, radiation dose of eye is reduced 25.88% in new OB TCM technique then reference scan technique and SNR new OB TCM is 6.05 higher than bismuth shielding scan technique and lower than reference scan technique. In clinical brain CT, new OB TCM technique will contribute to reduction of radiation dose for eye without decrease of image quality.

Usefulness of Dual Energy CT to Improve Image Quality Degradation due to Lens Shielding (수정체 차페로 기인한 화질저하 개선을 위한 듀얼 에너지 CT의 유용성)

  • Yoon, Joon;Kim, Hyeonju
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.969-977
    • /
    • 2019
  • Applying the bismuth shield used to reduce the radiation exposure, image quality may be reduced due to beam hardening caused by the shield during CT scan. Therefore, we tried to find out the energy range that can reduce image degradation by applying GSI mode of G company's dual energy CT and examine the possibility through experiment. As a result, after bismuth shielding, 118 ± 10.6 HU and 50.1 ± 14.6 HU at 50 keV after dual-energy CT scan were the most similar to the CT value before image deterioration(p> 0.05). It was measured 176.6 ± 7.1 and 138.3 ± 1.1 at 50 keV(p> 0.05). Experiments showed that the use of the shield during CT inspection inevitably degrades the image quality, but experiments show that the GSI function of the dual energy CT can maintain the image quality even when the shield is used. If the various shields are secured after the evaluation using the dual energy CT, it is expected to overcome the disadvantages of poor image quality caused by the use of the radiation shield for reducing the exposure, which is the biggest disadvantage of the CT scan.

Exposure dose of Dental Panoramagraphy using a Radiophotoluminescent Glass Rod Detector (유리선량계를 이용한 파노라마 검사의 피폭선량 측정)

  • Kim, Chang-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.907-910
    • /
    • 2010
  • 치과 진료시 파로라마 장치를 이용한 검사에서 유리선량계를 사용하여 피검자의 피폭선량을 측정하였다. 수정체의 피폭선량 영향을 평가하기 위하여 안경의 재질에 따라 수정체의 피폭선량을 측정하였다. 치아위치별 피폭선량 측정결과 82.4-2,340${\mu}Sv$ 선량분포로 나타나 최대 300% 이상의 피폭선량 차이를 보였다. 따라서 효과적이고 정확한 진단과 피폭선량 관리를 위해서는 장치제조시 예열시간 단축 과차폐등의 조치가 필요할 것으로 생각된다. 안경을 착용하였을 때 착용하지 않았을 때 비하여 수정체의 피폭선량이 안경의 재질에 따라서 1회 검사 시 20-75${\mu}Sv$ 증가되는 것으로 측정되었다. 그러므로 피폭 선량을 최소화하고 효율적인 검사를 위해 치과 파노라마 검사시 안경을 벗고 검사할 것을 권고 한다.

  • PDF

Simulation of Energy Absorption Distribution using of Lead Shielding in the PET/CT (PET/CT 검사에서 납 차폐체 사용에 따른 에너지 흡수 분포에 관한 모의실험)

  • Jang, Dong-Gun;Kim, Changsoo;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.459-465
    • /
    • 2015
  • Energy absorption distribution according to lead shielding for 511 keV ${\gamma}$ ray was evaluated using a Monte Carlo simulation in PET/CT. Experimental method was performed about the depth of skin surface(0.07), lens(3) and the depth(10) was conducted by using ICRU Slab phantom. Difference of energy absorption distribution according to lead thickness and effect of air gap according to distance of lead and phantom. As a result, study showed that using a lead shielding makes high energy distribution by backscatter electron. As a distance between lead and phantom increased, energy absorption distribution gradually decreased. 9 cm or more air gap should exist to prevent effect of backscatter electron which reaches skin surface, when 0.25 mmPb shielding is used. Also 1 cm or more air gap was needed to prevent the effect in 0.5 mmPb. If air gap was not concerned, 0.75 mm or more lead thickness was necessary to prevent effect of backscatter electron.

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Comparison of the Dose of the Normal Tissues among Various Conventional Techniques for Whole Brain Radiotherapy (여러 통상적인 전뇌방사선치료 기법에서의 정상조직의 조사선량 비교)

  • Kang, Min-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • Purpose: To compare radiation dose of the brain and lens among various conventional whole brain radiotherapy (WBRT) techniques. Materials and Methods: Treatment plans for WBRT were generated with planning computed tomography scans of 11 patients. A traditional plan with an isocenter located at the field center and a parallel anterior margin at the lateral bony canthus was generated (P1). Blocks were automatically generated with a 1 cm margin on the brain (5 mm for the lens). Subsequently, the isocenter was moved to the lateral bony canthus (P2), and the blocks were replaced into the multileaf collimator (MLC) with a 5 mm leaf width in the craniocaudal direction (P3). For each patient plan, 30 Gy was prescribed at the isocenter of P1. Dose volume histogram (DVH) parameters of the brain and lens were compared by way of a paired t-test. Results: Mean values of $D_{max}$ and $V_{105}$ of the brain in P1 were 111.9% and 23.6%, respectively. In P2 and P3, $D_{max}$ and $V_{105}$ of the brain were significantly reduced to 107.2% and 4.5~4.6%, respectively (p<0.001). The mean value of $D_{mean}$ of the lens was 3.1 Gy in P1 and 2.4~2.9 Gy in P2 and P3 (p<0.001). Conclusion: WBRT treatment plans with an isocenter located at the lateral bony canthus have dosimetric advantages for both the brain and lens without any complex method changes.

Effects of Self-Made Bismuth Shield Installation on Entrance surface Dose Reduction during Endovascular Treatment of Cerebral Aneurysms (뇌동맥류 코일 색전술시 자체 제작한 Bismuth 차폐체 설치의 피부선량 감소 효과)

  • Kim, Jae-Seok;Kim, Young-Kil;Choi, Jae-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2019
  • Cerebral nervous system intervention has been reported frequently due to radiation exposure such as blistering of the skin, hair loss, and erythema due to prolonged procedures. By applying ergonomically manufactured Bismuth (atomic number 83; Bi) shield to endovascular treatment of cerebral aneurysms, we aimed to minimize radiation exposure of scalp and lens from medical radiation exposure. The measurement site was the posterior part of the head, bilateral temporal part, bilateral quadriceps part, nose part, and the measuring part was attached to the optically stimulated Luminescence dosimeter (OSLD) Before and after the use, the entrance surface dose was compared and analyzed. The average entrance surface dose of group A (unshield) was 92.44 mGy, and group B was measured at 67.55 mGy. The average decrease in Group B was 26.92% compared to Group A. The entrance surface dose mean of the occipital region was measured at 146.08 mGy B group at 103.23 mGy and decreased by an average of 29.32% in group B compared to group A. The average entrance surface dose of the bilateral temporal part was measured in group A at 101.90 mGy group B at 72.69 mGy and decreased by an average of 28.67% in group B compared to group A. The average entrance surface dose for bilateral quadriceps part was measured at 27.51 mGy group B at 21.39 mGy and averaged 22.26% less in group B than group A. It is believed that the use of bismuth shields will be an alternative to reducing radiation disturbance due to temporary hair loss and other stochastic effects that may occur after the endovascular treatment of cerebral aneurysms procedure.

Measurement dose of Dental Panoramagraphy using a Radiophotoluminescent Glass Rod Detector (유리선량계를 이용한 파노라마 검사의 피폭선량 측정)

  • Kim, Chang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2624-2628
    • /
    • 2011
  • Exposed dose of a patient was measured by Radiophotoluminescent Glass Rod Detector with a use of a panorama graphic device in dental examination. The effect of exposed dose in optic lens was measured by comparing the different materials of the glasses. Depending on the dental location, the exposed dose distribution was 82.4~2,340uSv. It showed that the maximum difference in dose distribution was over 300%. Thus, when manufacturing the devices, it seemed to require shortening the pre-heat time and additional shielding in order to control the diagnosis and exposed dose. The measurement data of the exposed dose in optic lens was increased 20~75uSv per each test when compared putting on glasses with not wearing. As a result, taking off the glasses is recommended to improve efficiency of the test and minimize the exposed dose during dental panorama graphic examinations.

Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan (안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가)

  • Moon, Se-Young;Hong, Sang-Woo;Seo, Ji-Sook;Kim, Yeong-Beom;Kwak, Wan-Sin;Lee, Seong-Yeong;Kim, Jung-Soo
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.