• Title/Summary/Keyword: 수전해 스택

Search Result 5, Processing Time 0.016 seconds

Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle (고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가)

  • JUNG, HYE YOUNG;LEE, JUNYOUNG;YOON, DAEJIN;HAN, CHANGHYUN;SONG, MINAH;LIM, SUHYUN;MOON, SANGBONG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

Synthesis of Non-Noble Metal Catalysts for Oxygen Evolution Reaction by Co-Precipitation (공침법을 이용한 비 귀금속 산소 발생 반응 촉매의 합성)

  • Jang, Myeong-Je;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.68.1-68.1
    • /
    • 2017
  • 수소에너지의 무한한 가능성이 주목됨에 따라 과전압이 높은 산소 발생 촉매의 효율 향상 및 제작비용의 절감은 중요한 문제가 되어왔다. 백금계 촉매는 높은 효율과 낮은 과전압을 가지고 있지만 적은 매장량과 비싼 가격으로 수전해의 상용화에 큰 장애물이 되어왔다. 전이 금속 산화물 촉매는 가격이 저렴하고 형상과 크기 등에 따라 백금계 촉매에 비등한 성능을 발휘할 수 있다. 본 발표에서는 산소발생을 위한 촉매로서 Cu와 Co를 co-precipitation법을 이용하여 $Cu_xCo_{(3-x)}O_4$를 제작하고 이를 셀, 스택에 적용한 방법을 소개한다. 본문에서는 용액의 pH를 다르게 합성하여 Cu와 Co의 비율을 변화시켜 형상, 결정성을 조절할 수 있었고, 이러한 다른 조건에서 산소 발생 성능의 변화를 측정하였다. 최종적으로 최적의 성능을 나타내는 산소 발생 촉매를 셀 및 스택에 적용하여 실제적인 성능을 측정하였다.

  • PDF

A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction (CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰)

  • SANGKUK KIM;NAMGI JEON;SANGHYEOK LEE;CHIKYU AHN;JIN SOO AHN
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.162-167
    • /
    • 2024
  • Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System (5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구)

  • Kim, Ji-Hye;Lee, Eun-Kyung;Kim, Min-Woo;Oh, Gun-Woo;Lee, Jung-Woon;Kim, Woo-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.65-75
    • /
    • 2018
  • The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

A Study on Numerical Analysis Using the Two Phase Flow in Alkaline Water Electrolysis Stacks (알카리 수전해 스택에서 수소기포의 2상유동 수치해석에 관한 연구)

  • HAN, JINMOK;BAE, YOOGEUN;SEO, YOUNGJIN;KIM, SEWOONG;JUNG, YOUNGGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • In this paper, the reliability of the numerical analysis using the two phase flow on the behavior of the hydrogen bubbles in the alkali electrolysis stacks was investigated by comparing the results obtained from numerical analysis and flow visualization experiments. As the results, through comparison with results gotten to visualization experiments, it is possible to approximate analysis for the flow of hydrogen bubbles in the stacks by numerical analysis using the two-phase flow. Also, the flow of hydrogen bubbles around the electrodes could be similarly analyzed by numerical analysis using the two-phase flow.