• Title/Summary/Keyword: 수재해 관리

Search Result 111, Processing Time 0.029 seconds

Performance Analysis for Proposing Proper Construction Method for Joints of Polyurea Waterproofing Membrane Coating (폴리우레아 도막방수재의 이음부 적정 시공안 제안을 위한 성능 분석)

  • Lee, Jung-Hun;Kim, Byoungil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • In this study, an evaluation was conducted for a total of 16 conditions to suggest an appropriate construction method for the construction joint of polyurea waterproofing membrane coating. It was analyzed that the longer the construction time difference, the higher the rate of water leaks through joints, and it was confirmed that water leaks could be prevented through primer construction. In addition, since the surface of polyurea exposed outdoors for a long period of time is deteriorated and weakened, it was analyzed that polishing the area increases surface damage and affects the formation of the interface. During maintenance construction, it would be desirable to apply a primer before construction, and it is believed that using the same urea-based material will ensure waterproofing stability.

Establishment of hydraulic/hydrological models in the Mekong pilot area using global satellite-based water resources data (focusing on HEC-RTS/HMS model application) (글로벌 위성기반 수자원 데이터 활용 메콩지역 수리/수문모델 시범 구축 (HEC-RTS/HMS 모형 적용을 중심으로))

  • Cho, Younghyun;Park, Sang Young;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.111-111
    • /
    • 2021
  • 메콩지역은 최근 연 7%에 육박하는 경제성장률을 달성하며 아세안의 고성장을 지속 견인하고 있으나, 기후변화 및 급속한 도시화로 매년 가뭄·홍수 등 물 관련 재해 발생 빈도 및 강도 증가와 이에 따른 상·하류 국가간 물 분쟁 등으로 인해 메콩지역 지속가능 발전에 지장이 초래되고 있다. 이에 한국과 미국은 메콩우호국(Friends of the Lower Mekong, FLM) "메콩지역 수자원 데이터 관리 및 정보공유 강화에 관한 공동성명(2018년 8월)"을 계기로 메콩유역의 실시간 수자원 변동 모니터링 및 분석과 수자원 데이터 공동활용 역량을 강화하여 효율적이고 과학적인 수자원관리 지원과 함께 한국의 신남방정책과 미국의 인도-태평양 전략 시너지효과를 극대화하고자 메콩 주변국 재해경감 및 수자원 데이터 활용 역량강화를 위한 글로벌 위성기반 수문자료의 생산·활용 및 홍수·가뭄 등의 수재해 분석기술을 개발하고 있다. 여기에는 한국 K-water의 물관리 기술과 미국 NASA, USACE의 위성활용 및 수자원분석 기술을 접목하여 메콩지역의 체계적인 물관리 및 재해로부터 안전성 확보 기여에 목표를 두고 연구를 진행 중에 있다. 본 연구에서는 전 세계적으로 광범위하게 활용되고 있는 미공병단(USACE, U.S. Army Corps of Engineers)의 HEC software 프로그램을 메콩 시범지역(pilot area)에 적용하여 수리/수문모델 구축을 진행코자 한다. 구축되는 모형은 유역 상류 댐의 연계 모의운영 및 하류 홍수분석이 동시 가능한 HEC-RTS(Real-Time Simulation)로 이는 HEC-HMS, -ResSim, -RAS와 -FIA 모형이 순차적으로 결합된 수리/수문 모델링 시스템이다. 모형의 시범적용 지역은 현지 메콩위원회(MRC, Mekong River Comission)의 의견 등을 반영, 메콩강 하류지역(Lower Mekong) 본류 유역에 위성 자료 활용 및 준실시간(near real-time)으로 댐 모의운영 등을 고려할 수 있는 JingHong댐(중국 란창강 최하류)에서 라오스 Xayaburi댐(메콩강 최상류)까지의 구간을 선정하였다. 한편, 금번 연구에서는 HEC-RTS 중 HMS 모형 적용을 중심으로 가용한 위성자료(GPM IMERG)와 K-LIS 지표 모형 생산 자료를 활용하여 과거 홍수사상에 대한 모의를 고려하였다. 아울러, 연구에서 구축된 HMS 모형은 HEC-RTS에 포함되어 메콩 시범지역의 종합적 수리/수문분석에 적용될 예정이다.

  • PDF

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Evaluation System of River Levee Safety Map for Improving River Levee Maintenance Technology (하천제방 유지관리 기술의 고도화를 위한 하천제방 안전도맵 평가체계 제안)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.768-777
    • /
    • 2017
  • The efforts to improve river levee maintenance technologies have accelerated globally in a bid to deal with the flood damage resulting from the changes to the climate and flood events. This paper, in line with such tendency, proposes an evaluation system of a river levee safety map to maintain the river levee in an efficient manner. The concept of a river levee safety map is aimed at maximizing the maintenance efficiency for a manager to indicate the safety index, including the current river levee sliding, piping, and visual inspection on a GIS map. To develop such an evaluation system, a safety index covering the sliding, piping, and visual inspection are designated through the data and document examination and the rational guideline to classify each index into three grades, A, B, and C, is proposed. Based on the guideline proposed, the sliding and piping characteristics in terms of safety depending on the change to the flood water level duration time at the test section (Nam river) were evaluated by numerical analysis. As a result, both the protected landside and riverside satisfied the requirements for Grade A in terms of sliding, and when it comes to piping, the grade declined to C because the flood water level duration time increased at R2. As a planning study to propose a river levee safety map evaluation system, a further advanced study, standardization of the river levee data, and improvement of the existing system and laws are required.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Establishment of hydraulic/hydrological models in the Mekong pilot area using global satellite-based water resources data II - focusing on HEC-RTS/RAS model application (글로벌 위성기반 수자원 데이터 활용 메콩지역 수리/수문모델 시범 구축 II - HEC-RTS/RAS 모형 적용을 중심으로)

  • Cho, Younghyun;Noh, Joonwoo;Park, Sang Young;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.121-121
    • /
    • 2022
  • 한국과 미국은 2018년 8월에 발표한 메콩우호국(Friends of the Lower Mekong, FLM) "메콩지역 수자원 데이터 관리 및 정보공유 강화에 관한 공동성명"을 계기로 메콩유역의 실시간 수자원 변동 모니터링 및 분석과 수자원 데이터 공동활용 역량을 강화하여 효율적이고 과학적인 수자원관리 지원과 함께 한국의 신남방정책과 미국의 인도-태평양 전략 시너지효과를 극대화하고자 메콩 주변국 재해경감 및 수자원 데이터 활용 역량강화를 위한 글로벌 위성기반 수문자료의 생산·활용 및 홍수·가뭄 등의 수재해 분석기술을 개발하고 있다. 여기에는 한국 K-water의 물관리 기술과 미국 NASA, USACE의 위성활용 및 수자원분석 기술을 접목하여 메콩지역의 체계적인 물관리 및 재해로부터 안전성 확보 기여에 목표를 두고 연구를 진행 중에 있다. 본 연구에서는 전 세계적으로 광범위하게 활용되고 있는 미공병단(USACE, U.S. Army Corps of Engineers)의 HEC software 프로그램을 메콩 시범지역(pilot area)에 적용하여 수리/수문모델 구축을 진행하고 있다. 구축되는 모형은 유역 상류 댐의 연계 모의운영 및 하류 홍수분석이 동시 가능한 HEC-RTS(Real-Time Simulation)로 이는 HEC-HMS, -ResSim, -RAS와 -FIA 모형이 순차적으로 결합된 수리/수문 모델링 시스템이다. 모형의 시범적용 지역은 현지 메콩위원회(MRC, Mekong River Comission)의 의견 등을 반영, 메콩강 하류지역(Lower Mekong) 본류 유역에 위성자료 활용 및 준실시간(near real-time)으로 댐 모의운영 등을 고려할 수 있는 JingHong댐(중국 란창강 최하류)에서 라오스 Xayaburi댐(메콩강 최상류)까지의 구간을 선정하였으며, 전년도에는HEC-RTS 중 HMS(Hydrologic Modeling System) 모형 적용을 중심으로 가용한 위성자료(GPM IMERG)를 활용하여 과거 홍수사상에 대한 모의를 고려한 강우-유출모형의 구축을 완료하였다. 이에 연속하여 금년도에는 동일유역 내 하천 단면 등이 확보된 Chiang Saen 지점에서 Xayaburi 댐까지의 구간에 대해 RAS(River Analysis System)을 구축할 예정으로 구축된 RAS 모형은 HEC-RTS에 포함되어 메콩 시범지역의 종합적 수리/수문분석에 적용될 예정이다.

  • PDF

Analysis of PVD Degree of Consolidation with Various Core Types (코어형태에 따른 연직배수재의 압밀도 분석)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Zhanara, Nazarova
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to acquire areas for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground subsidence especially when their strength is low and depth is deep, we need to accurately analyze the engineering properties of soft grounds and find general measures for stable and economic design and management. Vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under pre-loading and various types of vertical drain are used with there discharge capacity. Under field conditions, discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experiment study were carried out to obtain the discharge capacity of six different types of vertical drains by utilizing the large-scale model tests and discharge capacity, degree of consolidation with the time elapsed.

  • PDF

Enhancing maintenance performance of tunnel drainage using vibration from polyvinylidene fluoride(PVDF) film (압전필름의 진동을 활용한 터널배수재 유지관리 성능 개선)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Song, Young-Karb;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.822-826
    • /
    • 2015
  • This study investigated the possible use of vibration from polyvinylidene fluoride(PVDF) film to enhance the performance of the deteriorated tunnel drainage due to physical/chemical clogging of the fine particles through a series of laboratory experiments. The test program was consisted of two different experiments, fundamental investigation and drainage model test. In the fundamental investigation, flow of clay slurry mixed with 50% water (freshwater and brine) on PVDF film with various frequencies was examined. In the model tests, slurry clogging to the woven fiber attached to drainage pipe and its reduction by vibration was investigated. Results of the experiment show that vibration from PVDF film enhances the drain performance significantly. Based upon the investigation, it gives an essential data that are needed for a potential use of hybrid drainage system with PVDF.

A Conceptual Design of Spatial and Non-spatial Information for Water Hazard Information Management and Service (수재해 정보관리 및 서비스를 위한 공간, 비공간 정보 자료 개념 설계)

  • Lee, Jeong-Ju;Kim, Dong-Young;Jung, Young-Hun;Hwang, Eui-Ho;Chae, Hyo-Sok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • This study conducted a basic design of system and interface which provide both of spatial and non-spatial data for water hazard information management. This helps to decide directions of the future integrated water hazard information platform and possible technical examinations of the web-based system for the realization of the prototype. For user friendly system, this study did a survey to investigate the data format, service environment, image processing level and visualization type that users prefer. Also, authorization range was set up by type of the user group. In the water hazard information platform, the data and analysis algorithm were classified by the fields. Furthermore, the platform was consisted with six block systems according to the function and the interface and designed to flexibly mount or modify the additional functions. For a basic design of the data exchange method and protocols, a prototype was constructed by using the spatial information web service technology. The portal service system to visualize and provide spatial data was designed by the WMS/WFS type of OGC standard interface and the FTP/HTTP interface type through open source GIS software for server environment.

Evaluation of Discharge Capacity with PVDs Types in Waste Lime Area (폐석회지반에서의 연직배수재의 종류에 따른 통수능 평가)

  • Shin, Eun-Chul;Kim, Gi-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • Recently, the demand for industrial and residential lands are being increased with economic growth, however, it is difficult to acquire the land for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground settlement especially when their strength is low and depth is deep, it needs to accurately analyze the engineering properties of soft grounds and find general measurement for stabilization and economic design and management. Prefabricated vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under the preloading and various types of vertical drain are being used with the discharge capacity. Under field conditions, the discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains, and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experimental study were carried out for two different types of vertical drains by utilizing the large-scale model tests and waste lime.

  • PDF