• Title/Summary/Keyword: 수자원 평가

Search Result 3,797, Processing Time 0.039 seconds

Projection of Future Snowfall by Using Climate Change Scenarios (기후변화 시나리오를 이용한 미래의 강설량 예측)

  • Joh, Hyung-Kyung;Kim, Saet-Byul;Cheong, Hyuk;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2011
  • Due to emissions of greenhouse gases caused by increased use of fossil fuels, the climate change has been detected and this phenomenon would affect even larger changes in temperature and precipitation of South Korea. Especially, the increase of temperature by climate change can affect the amount and pattern of snowfall. Accordingly, we tried to predict future snowfall and the snowfall pattern changes by using the downscaled GCM (general circulation model) scenarios. Causes of snow varies greatly, but the information provided by GCM are maximum / minimum temperature, rainfall, solar radiation. In this study, the possibility of snow was focused on correlation between minimum temperatures and future precipitation. First, we collected the newest fresh snow depth offered by KMA (Korea meteorological administration), then we estimate the temperature of snow falling conditions. These estimated temperature conditions were distributed spatially and regionally by IDW (Inverse Distance Weight) interpolation. Finally, the distributed temperature conditions (or boundaries) were applied to GCM, and the future snowfall was predicted. The results showed a wide range of variation for each scenario. Our models predict that snowfall will decrease in the study region. This may be caused by global warming. Temperature rise caused by global warming highlights the effectiveness of these mechanisms that concerned with the temporal and spatial changes in snow, and would affect the spring water resources.

Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model (도시성장 시나리오와 CLUE-s 모형을 이용한 우리나라의 토지이용 변화 예측)

  • LEE, Yong-Gwan;CHO, Young-Hyun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.

Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia (아시아 Fluxnet 자료를 활용한 보완관계 기반 증발산량 추정)

  • Seo, Hocheol;Kim, Jeongbin;Park, Hyesun;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.303-310
    • /
    • 2017
  • Evapotranspiration is a significant hydrologic quantity for understanding the amount of available water resource evaluation, water balance analysis, water circulation and energy circulation. Various methods have been developed for estimating the evapotranspiration using data observed at meteorological observatories. Especially, the focus of methods has been on the complementary relationship that the actual evapotranspiration is equal to the difference between the twice of evapotranspiration in the wet condition and the potential evapotranspiration. The Granger and Gary (GG) method is an empirical formula that can be used to estimate the evapotranspiration using only empirical parameters based on the complementary relationship and using only the net radiation and temperature of the region. In this study, we compared the evapotranspiration data observed at 10 sites in Asia within the dataset of FLUXNET2015, with the evapotranspiration calculated by GG method. The evapotranspiration in inland area was estimated more accurately than that of coastal area. Simulated Annealing (SA) was used for the coastal area to modify the parameters. Using the modified GG method, we could improve the statistics such as root mean square error, the coefficient of determination ($R^2$), and the mean absolute ${\mid}BIAS{\mid}$ of the evapotranspiration estimation in coastal area.

Prediction of Runoff on a Small Forest Watershed Using BROOK90 Model (BROOK90 모형을 이용한 산림소유역의 유출량 추정)

  • Im, Sang-Jun;Lee, Sang-Ho;Lee, Hee-Gon;Ahn, Su-Jung
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.155-162
    • /
    • 2007
  • Water balance is the major factor in forest ecosystem, and is closely related to the vegetation and topographic characteristics within a watershed. The hydrologic response of a forest watershed was investigated with the hydrological model. The deterministic, lumped parameter model (BROOK90) was selected and used to evaluate the applicability of the model for simulating daily runoff on the steep, forested watershed. The model was calibrated and validated against the streamflow data measured at the Bukmoongol watershed. The deviation in runoff volume $(D_v)$ was -1.7% for the calibration period, and the $D_v$ value for the validation period was 4.6%. The correlation coefficient (r) and model efficiency (E) on monthly basis were 0.922,0.847, respectively, for the calibration period, while the r- and E-value for the validation period were 0.941, 0.871, respectively. Overall, the simulated streamflows were close to the observations with respect to total runoff volume, seasonal runoff volume, and baseflow index for the simulation period. BROOK90 model was able to reproduce the trend of runoff with higher correlation during the simulation period.

Estimation of Surface Fluxes Using Noah LSM and Assessment of the Applicability in Korean Peninsula (Noah LSM을 이용한 지표 플럭스 산정 및 한반도에서의 적용성 검토)

  • Jang, Ehsun;Moon, Heewon;Hwang, Seok Hwan;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.509-518
    • /
    • 2013
  • Understanding of the exchange between the water and energy which is happening between the surface and atmosphere is the basic of studying water resources. To study these, lots of researches using Noah Land Surface Model(LSM) are in progress. Noah LSM is based on energy and water balance equation and simulates various hydrological factors. There are diverse researches with Noah LSM are ongoing in overseas, on the other hand not enough study has been done. Especially there is almost no study using uncoupled Noah LSM in Korea. In this study we used data from Korea Flux Tower in Haenam(HFK) and Gwangneung(GDK) as forcing data to simulate the model and compared its result of net radiation, sensible heat flux and latent heat flux with the observation data to assess the applicability of Noah LSM in Korea. Regression coefficients of the comparison results of Noah LSM and observation show good agreement with the value of 0.83~0.99 at Haenam and 0.64~0.99 at Gwangneung which means Noah LSM can be trusted.

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF

Implementation & Test Results analysis Of a DTV Distributed Translator(DTxR) Network (DTV 분산중계망의 구축 및 실험방송 결과분석)

  • Mok, Ha-Kyun;Wang, Soo-Hyun;Sung, Young-Mo;Lee, Yong-Tae;Lee, Yong-Hoon;Kim, Heung-Mook
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.518-536
    • /
    • 2009
  • To verify the performance of a Distributed Translator Network(DTxR) system in the real world conditions, 5 legacy DTV broadcasting repeater sites were implemented with 5 DTxR systems and field-tested by the DTV field test truck. The 4 DTV broadcasting repeater sites are selected in congested areas where their service areas are overlapped and the 5th site is deviated from the other sites to examine the effect of long-delayed multipath signals. First of all, we checked the receiving signal of the main station that used as a transmitting signal in 5 DTxR systems on the pre-selected 60 test points and tested every case of a DTxR system's on & off except 1 repeater site due to the already built-in DTV repeater system. The test items are received signal electric field strength, noise margin, ease of reception and subjective evaluation of the picture quality for received signals. We used 3rd, 5th, and 6th generation DTV receivers to examine the differences of the receivability by each generation of DTV receivers. Reviewing the test results, we conclude that the DTxR system can be adopted in the current DTV Repeater sites and it could improve the quality and receivability of the main signals by extending the service areas and enhancing the signal levels in the shadow areas without using the extra broadcasting channels.

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.

Abnormal Changes in Groundwater Monitoring Data Due to Small-Magnitude Earthquakes (지하수 모니터링 이상변동 자료를 이용한 소규모 지진 영향 유추)

  • Woo, Nam C.;Piao, Jize;Lee, Jae-Min;Lee, Chan-Jin;Kang, In-Oak;Choi, Doo-Houng
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.21-33
    • /
    • 2015
  • This study tests the potential of detecting small-magnitude earthquakes (~M3.0) and their precursors using a long-term groundwater-monitoring database. In groundwater records from April to June 2012, abnormal changes in water level, temperature, and electrical conductivity were identified in the bedrock monitoring wells of the Gimcheon-Jijwa, Gangjin-Seongjeon, and Gongju-Jeongan stations. These anomalies could be attributed to the M3.1 earthquake that occurred in the Youngdeok area on May 30th, although no linear relationship was found between the scale of changes and the distance between each monitoring station and the epicenter, which is attributed in part to the wide screen design of the monitoring wells. Groundwater monitoring networks designed specifically for monitoring earthquake impacts could provide better information on the safety of underground space and on the security of emergency water-resources in earthquake disaster areas.

Estimation of Small Hydropower Resources by Hydrologic Analysis of Han-River Standard Basin (한강수계 표준유역의 수문특성분석을 통한 소수력 자원량 산정)

  • Seo, Sung Ho;Oh, Kuk Ryul;Park, Wan Soon;Jeong, Sang Man
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • 에너지자원이 부족하여 에너지 해외의존도가 약 80% 이상인 우리나라의 특성상 에너지 해외의존도를 경감시키고 에너지부족 상황을 안정시키기 위하여 국내의 부존에너지를 최대한 활용하는 것이 필요하다. 또한 지구온난화에 대처하는 범세계적인 규제에 대비하기 위하여, 청정에너지를 적극 개발하여 에너지자립도를 향상시켜야 한다. 신재생에너지 중 하나인 소수력은 친환경적인 청정에너지 중 하나로 다른 대체 에너지원에 비해 높은 에너지 밀도를 가지고 있어 개발 가치가 큰 부존자원으로 평가되고 있다. 그리고 소수력은 여러측면의 사회적 환경적 이점으로 최근에는 선진국에서도 매우 큰 관심을 끌고 있으며, 에너지 자원이 빈약하여 대부분 석유수입에 의존하는 우리나라는 지역에너지로 소수력을 적극 개발하여야 한다. 소수력 부존량이 풍부한 우리나라는 1982년에 소수력 개발 활성화 방안이 공표되면서부터 정부주도 하에 소수력 발전소 건설에 관한 연구를 적극적으로 지원하게 되었다. 대수력과 비교하여 소수력의 장점으로는 비교적 짧은 계획 및 시공기간, 낮은 투자비용, 개인이나 기업을 통한 투자참여, 주위 인력이나 자재를 이용한 쉬운 설치, 적은 환경적인 피해 등이 있다. 이와 같이 청정에너지 중 하나인 소수력의 개발과 활용을 위하여 IT 기술을 접목한 다양한 응용시스템 구축이 진행되고 있다. 특히, 한국에너지기술연구원에서는 신재생에너지 개발 및 보급 확대를 목표로 2006년에 신재생에너지 자원지도시스템을 구축하였으며, 이를 웹상에서 제공하고 있다. 소수력 발전시설의 적극적인 활용을 위해서는 초기설계시 장기유출 특성분석을 통해 해당유역의 수자원을 최대로 활용하고, 지형적인 요소를 이용하여 전기의 생산이 최대가 되도록 하는 최적설계가 이루어 져야 한다. 따라서 본 연구에서는 소수력 발전시설의 최적설계를 위해 한강수계 258개 표준유역 중 섬강합류점에 대하여 자원지도를 활용하여 연평균유량을 추정한 후 소수력 자원량을 산정하였고, 그 결과로 시설용량과 연간전기생산량은 각각 1,633kW, 6,224MWh로 산정되었다. 또한 유출량의 미계측 유역에서의 소수력 발전성능을 예측하기 위한 방법으로 Weibull 분포의 특성화 방법을 선택하여 그 적용성을 검토하였다. 섬강합류점 표준유역 내에 위치하고 있는 목계관측소, 앙성관측소에서의 10개년(1999~2008) 강우자료를 바탕으로 유황곡선을 작성하여 상관관계분석을 실시한 결과 목계관측소에서 0.994701, 앙성관측소에서 0.992616으로 관측치와 계산값이 상당히 유사한 것으로 나타났다.

  • PDF