• Title/Summary/Keyword: 수자원 평가

Search Result 3,797, Processing Time 0.032 seconds

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

Hydrologic evaluation of SWAT considered forest type using MODIS LAI data: a case of Yongdam Dam watershed (MODIS LAI 자료를 활용하여 임상별로 고려한 SWAT의 수문 평가: 용담댐유역을 대상으로)

  • Han, Daeyoung;Lee, Jiwan;Kim, Wonjin;Baek, Seungchul;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.875-889
    • /
    • 2021
  • This study compares and analyzes the Soil and Water Assessment Tool (SWAT) and Terra MODIS (Moderate Resolution Imaging Spectroradiometer) as coniferous, deciduous and mixed forest with Yongdam Dam upstream (904.4 km2). The hydrologic evaluation period was set to 10 years from 2010 to 2019, and the applicability of the 8-day MOD15A2 Leaf Area Index (LAI) data, 3 TDR (Time Domain Reflectometry) (GB, JC, CC), and 1 Flux Tower (DU) evaporation volume (YDD) data was simulated. As a result, the R2 of coniferous forest, deciduous forest and mixed forest are 0.95, 0.89, 0.90, soil moisture and evaportranspiration stations R2 were analyzed at 0.50 to 0.55 and 0.51, respectively, with R2 at 0.74, RMSE 2.75 mm/day, NSE 0.70 and PBIAS 14.3% for Yongdam inflow. Based on the calibrated and validated watersheds, the annual average evaportranspiration was calculated as coniferous 469.7 mm, deciduous 501. mm and 511.5 mm mixed forest, total runoff were estimated at coniferous 909.8 mm, deciduous 860.6 mm and 864.2 mm mixed forest. In the case of annual average evaportranspiration, it was evaluated that deciduous were high, but in the case of streamflow, it was evaluated that coniferous were high. Unlike other hydrologic with similar patterns throughout the year, the average annual evapotranspiration was about 7% higher than coniferous due to the higher evapotranspiration of deciduous with high leaf area index in summer and fall. In addition, deciduous were 9% and 6% higher for surface runoff and lateral flow, but the groundwater of coniferous was 77% higher. Therefore, it was confirmed that the total runoff was in order of coniferous, mixed forest, and deciduous.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Development of App. for Visualization of Micro Hydro Power Potential (초소수력 발전 잠재량의 가시화를 위한 앱 개발)

  • Kim, Dong Hyun;Yang, Chang Wook;Lee, Seung Oh
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Interest in all kinds of renewable energies has been highly increased while the micro-small-hydro power(MSHP) development has shown relatively slowly growth because of the negative public recognition about dam site development. It is, however, announced that the micro-SHP shows higher energy conversion efficiency compared to other renewable energies and does not emit any carbon dioxide. Thus, it is concerned about the development and application of micro-SHP as an alternative energy. In this study, the application for Android was exploited with Eclipse to visualize readily the potential realizable amount of hydropower by micro-SHP. With this application, we can select the region from the map, obtain the design discharge of the selected site was calculated with HEC-HMS, presented by U.S. Army of Corp. and perform the simply economic analysis in sequence. Yeongwol in Gangwon-do Province, Korea was chosen as the target area since historically abundant precipitation was found and it is possible to obtain fundamental data from WAMIS. Results from this study could be expanded the whole region of Korea. Also, the initial investment cost would be reduced if the location for micro-SHP would be determined properly, because this application can help us easily select and examine the potential micro-SHP sites without on-the-spot visit.

Development of a Method for Determining the Instream Flow and Its Application: II. Application and Result (하천유지유량 결정 방법의 개발 및 적용: II. 적용 및 결과)

  • 김규호;김선미
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.185-202
    • /
    • 1996
  • The newly-developed method for estimating the instream flow, proposed by the authors (1996), was applied to the main channel reach of the Kum River basin in Korea. Performance of the suggested method was tested through the evaluations of the required flow, instream flow, and river-management flow which were estimated at five main reaches with each representative station. The mean drought flow was used as the object flow to evaluate the minimum instream flow for the mid- and large-size rivers. Water quality prediction by using the QUAL2E model was made for both cases that the planned wastewater treatment facilities may and may not be constructed. The required flow for the fish habitat was evaluated for 9 representative fish species. The instream flows required for the riverine aesthetics at Kong-ju and Puyo scenary points, for river navigation at natural channel conditions, and for current and potential recreation activities were evaluated, respectively. The instream flows required for other items are not quantified. On the whole, it is shown that the instream flow to maintain the natural riverine functions such as fish habitat, and riverine aesthetics govern the upstream reaches of the Kum River, and the artificial riverine functions such as conservation of water quality, navigation and recreations govern the middle and downstream reaches. Especially, it is found that the instream flow requirement depends largely upon the construction of wastewater treatment facilities at the Kum River basin.

  • PDF

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF