• Title/Summary/Keyword: 수온 예측

Search Result 244, Processing Time 0.029 seconds

Argo Project: On the Distribution Prediction of Drifting Argo Floats (Argo프로젝트: Argo플로트 분포 예측)

  • Yang Chan-Su;Ishida Akio
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • An international project, known as Argo, for collecting data on temperature, salinity and velocity of currents in the world's oceans, has been started in the year 2000 and the full Argo array of approximately 3000 floats will be deployed by 2006. 18 countries deployed 1,023 floats, which are operating in the ocean of the world as of December 2003. In the present study, we tried to predict float distribution and a rate of drifting ashore of the floats after their termination based upon a product of the ocean general circulation model of JAMSTEC (Japan Marine Science and Technology Center). We first evaluated reliability of the model prodilct quantitatively by comparing trajectories of surface buoys of WOCE Surface Velocity Program (SVP) and those predicted by the model surface current field. It is found that the model is acceptable for practical application to deploy floats and to estimate those trajectories. 653 particles at 3-degree spacing are used to investigate the ratio of floats drifted ashore, given that during the first 4 years floats cycle between the surface and 2000m for 10 days and then floats are on just the surface for 100 years. The simulation indicates that about 29% of deployed floats will be drifted ashore within 100-year.

  • PDF

Application of HSPF Model for Effect Analyses of Watershed Management Plans on Receiving Water Qualities (유역관리에 따른 수질개선 효과분석을 위한 HSPF 모델 적용)

  • Song, Hye-Won;Lee, Hye-Won;Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.358-363
    • /
    • 2009
  • The HSPF (Hydrological Simulation Program-Fortran) model was applied to the Kyoungan stream watershed to analyze effects of watershed management plans on receiving water qualities. Utilizing BASINS 3.1 GIS program, the Kyoungan stream watershed was divided into 57 sub-basins and model input parameters were obtained, from DEM (Digital Elevation Model), land use type, stream map, and wastewater treatment facilities, etc.. The hydrologic module of the model was validated based on the measured meteorological data and stream flow data. Then the model was calibrated and verified against the field measurements of water qualities, including temperature, DO, BOD, $NO_3-N$, $NH_3-N$, Org-N, TN and TP. In most cases, there were reasonable agreements between measurements and predictions. The validated model was used to analyze the water quality improvements in the main stream of Kyoungan stream according to the watershed management plans in sub-basins, which are three different scenarios: water quality improvement in tributaries through watershed management activities, expansion and up-grade of wastewater treatment plants, and application of first and second scenarios together. It was concluded that expansion and upgrade of wastewater treatment plants would be more effective than watershed management activities. In order to improve water qualities to the satisfactory level, both watershed management and point source control must be required in the Kyoungan stream.

Simulation of Turbidity Flow in the Andon-Imha Linked Reservoir System (안동-임하호 연결 시스템의 탁수유동 모의)

  • Park, Hyung Seok;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.46-46
    • /
    • 2015
  • 강우가 지역별 계절별로 편중되어 있는 우리나라는 수자원의 안정적인 확보와 이용을 위해 다양한 형태의 댐을 건설하여 운영하고 있다. 그러나 대부분의 댐건설을 통해 형성된 저수지들은 탁수 장기화 및 녹조 발생 등의 환경, 생태적인 문제를 겪고 있으며, 그에 따른 사회적 우려로 인해 신규댐 건설을 통한 수자원확보는 더 이상 어려운 실정이다. 이러한 문제에 대응하기 위한 대안으로 기존 댐 저수지들(안동호-임하호)의 구조적 연계운영방안이 진행되고 있다. 본 연구의 목적은 2차원 CE-QUAL-W2모형을 활용하여 안동호와 임하호의 구조적 연결에 따른 탁수의 이동과 각 저수지 내에서의 유동 변화를 해석하는데 있다. 저수지 연계 시나리오는 EL. 138 m 위치에 길이 2 km, 직경 5.5 m 의 콘크리트관(마찰계수 0.05)이 안동호 좌안인 임동면 마리와 임하호 우안 망천리를 연결하는 것으로 가정하였다. 모델의 보정은 실측자료가 풍부한 2006년도 수문사상을 대상으로, 개별 저수지에 대해 수행하였고, 탁수 유동 시나리오 해석은 임하호에 심각한 탁수장기화 문제가 발생했던 2002년을 대상으로 댐 연계 탁수모의를 수행하였다. 안동호와 임하호의 댐 앞에서 모의값과 실측값을 오차를 분석한 결과 탁수예측오차는 AME 0.5~24 mg/L, RMSE 0.7~30.2mg/L의 범위로 비교적 실측값을 잘 반영한 것으로 나타났다. 임하댐의 경우 탁수층의 위치와 두께, 그리고 최고 탁도값을 적절히 재현 하였지만, 안동댐은 최고 탁도값 예측에서 다소 오차가 발생하는 것으로 나타났다. 안동호와 임하호 단독 운영시와 연계 운영시의 탁수변화 파악을 위해 초기 홍수사상이 발생한 8월 이후부터 저수지내의 TSS농도 분포를 비교하였다. 안동호의 경우 댐앞지점의 탁수분포는 수온성층구조에 영향을 받아, 단독 운영시(EL. 130 m)보다 연계운영시(EL. 140 m)에 탁수의 중심이 높은 위치에 형성되었다. 단독 운영시 10월 이후에 전도현상으로 인해 침강되지 않은 잔류 탁수층이 저수지 하부로 확산되었지만, 연계 운영시에는 재부상 되어 상층으로 확산되는 것으로 모의되었다. 또한 연계운영시 유량이동으로 인해 안동호의 탁수 댐앞 도달시간이 짧아지는 것으로 나타났다. 반면 임하호는 연계 운영시 안동댐으로 유출이 생기면서 중층에서 탁수량이 저감되는 것으로 모의되었다. 저수지 내 탁수량 분석을 위해 SS 15 mg/L 이상의 잔류 탁수량을 분석한 결과, 연계운영시 안동호의 평균 잔류탁수량 비율은 11.8% 증가, 임하호의 경우 11.7% 감소하였다. 또한, 탁수의 댐하류 방류일수도 SS 15 mg/L 기준 임하호 9일 저감, 안동호는 70일 증가하여 임하호의 탁수가 안동호의 탁수 장기화에 영향을 주는 것으로 나타났다.

  • PDF

The Study on the Prediction of Algae Occurrence by the Multiple Regression Analysis After Weir Construction at Namhan River (다중회귀분석을 이용한 남한강 내 보 건설 후 조류 발생량 예측)

  • Oh, Seung-Eun;Ahn, Hong-Kyu;Chae, Soo-Kwon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.470-478
    • /
    • 2017
  • This study was classified into two groups, normal season group and drought season group, by the cluster analysis using the weather and water quality data from 2012 to 2015, using SPSS 18 version. Also each cluster was classified into three spaces, Gangcheon, Yeoju and Ipoh weir. We performed the multiple regression analysis with each monthly data that concentration of Chl-a was more than algae warming level. 6 groups classified in time and space were analyzed by the correlation analysis between concentration of Chl-a and 3 weather, 11 water quality and discharge factors. We developed Chl-a prediction equations of each group with independent variables of the multiple regression analysis applying to the correlation result. The result of cluster analysis was that the period was divided into two groups, normal group(2012-2013) that total annual precipitation rate was normal and drought group(2014-2015) that total annual precipitation rate was less than 1,000 mm/hr, in time. The months that concentration of Chl-a was more than algae warming level in each group classified by cluster analysis were that the normal group was 3~8 and drought group was 3 and 6~10. The correlation result between Chl-a and weather, water quality and discharge factors for each 6 group was that relationships between Chl-a and water, discharge factors were high in the drought group more than in normal group at all weirs. This was influenced by velocity reduction and increasing HRT according to the intense drought. Weather, water quality and discharge factors that were high correlation with Chl-a were applied to independent variables of Chl-a prediction equations and each equations were developed. Among them, Each adjusted R square of Prediction equations for Chl-a in each group at Ipoh weir where is located in Namhan river downstream and is directly connected to Paldang dam were normal group = 0.920 and drought group = 0.818. It's showed the high linear.

Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis (다중회귀분석을 이용한 낙동강 하류의 Chlorophyll-a 농도와 복합 영향인자들의 상관관계 분석)

  • Lim, Ji-Sung;Kim, Young-Woo;Lee, Jae-Ho;Park, Tae-Joo;Byun, Im-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.253-261
    • /
    • 2015
  • In this study, Chlorophyll-a (chl-a) prediction model and multiple parameters affecting algae occurrence in Mulgeum site were evaluated by statistical analysis using water quality, hydraulic and climate data at Mulgeum site (1998~2008). Before the analysis, control chart method and effect period of typhoon were adopted for improving reliability of the data. After data preprocessing step two methods were used in this study. In method 1, chl-a prediction model was developed using preprocessed data. Another model was developed by Method 2 using significant parameters affecting chl-a after data preprocessing step. As a result of correlation analysis, water temperature, pH, DO, BOD, COD, T-N, $NO_3-N$, $PO_4-P$, flow rate, flow velocity and water depth were revealed as significant multiple parameters affecting chl-a concentration. Chl-a prediction model from Method 1 and 2 showed high $R^2$ value with 0.799 and 0.790 respectively. Validation for each prediction model was conducted with the data from 2009 to 2010. Training period and validation period of Method 1 showed 20.912 and 24.423 respectively. And Method 2 showed 21.422 and 26.277 in each period. Especially BOD, DO and $PO_4-P$ played important role in both model. So it is considered that analysis of algae occurrence at Mulgeum site need to focus on BOD, DO and $PO_4-P$.

Analysis of the Relationship between the Flow Characteristics of the Tsushima Warm Current and Pacific Decadal Oscillation (대마난류의 유동 특성과 PDO의 관계 분석)

  • Seo, Ho-San;Chung, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2022
  • In this study, to understand the factors influencing the flow change the Tsushima Warm Current (TWC), the correlation between the volume transport the TWC, El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) was analyzed. A calculation of the monthly volume transport of TWC for 25 years (1993-2018) revealed that the seasonal fluctuation cycle was the largest in summer and smallest in winter. Power spectrum analysis to determine the periodicity of the TWC volume transport, Oceanic Niño Undex (ONI), and PDO indicated that the TWC volume transport peaked at a one year cycle, but ONI and PDO showed no clear cycle. Further, to understand the correlation between the TWC transport volume and ONI and PDO, the coherence estimation method was used for analysis. The coherence of ONI and PDO had a high mutual contribution in long-period fluctuations of three years or more but had low mutual contribution in short-period fluctuations within one year. However, the coherence value between the two factors of the TWC volume transport and PDO was 0.7 in the 0.8-1.2 year cycle, which had a high mutual contribution. Meanwhile, the TWC volume transport and PDO have an inverse correlation between period I (1993-2002) and period III (2010-2018). When the TWC maximum transport volume (2.2 Sv or more) was high, the PDO index showed a negative value below -1.0, and the PDO index showed a positive value when the TWC maximum transport volume was (below 2.2 Sv). Therefore, using long-term PDO index data, changes in the TWC transport volume and water temperature in the East Sea coastal area could be predicted.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Development and Evaluation of Traffic Conflict Criteria at an intersection (교차로 교통상충기준 개발 및 평가에 관한 연구)

  • 하태준;박형규;박제진;박찬모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • For many rears, traffic accident statistics are the most direct measure of safety for a signalized intersection. However it takes more than 2 or 3 yearn to collect certain accident data for adequate sample sizes. And the accident data itself is unreliable because of the difference between accident data recorded and accident that is actually occurred. Therefore, it is rather difficult to evaluate safety for a intersection by using accident data. For these reasons, traffic conflict technique(TCT) was developed as a buick and accurate counter-measure of safety for a intersection. However, the collected conflict data is not always reliable because there is absence of clear criteria for conflict. This study developed objective and accurate conflict criteria, which is shown below based on traffic engineering theory. Frist, the rear-end conflict is regarded, when the following vehicle takes evasive maneuver against the first vehicle within a certain distance, according to car-following theory. Second, lane-change conflict is regarded when the following vehicle takes evasive maneuver against first vehicle which is changing its lane within the minimum stopping distance of the following vehicle. Third, cross and opposing-left turn conflicts are regarded when the vehicle which receives green sign takes evasive maneuver against the vehicle which lost its right-of-way crossing a intersection. As a result of correlation analysis between conflict and accident, it is verified that the suggested conflict criteria in this study ave applicable. And it is proven that estimating safety evaluation for a intersection with conflict data is possible, according to the regression analysis preformed between accident and conflict, EPDO accident and conflict. Adopting the conflict criteria suggested in this study would be both quick and accurate method for diagnosing safety and operational deficiencies and for evaluation improvements at intersections. Further research is required to refine the suggested conflict criteria to extend its application. In addition, it is necessary to develope other types of conflict criteria, not included in this study, in later study.

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF